Suppr超能文献

用于人工智能应用的热力学计算系统。

Thermodynamic computing system for AI applications.

作者信息

Melanson Denis, Abu Khater Mohammad, Aifer Maxwell, Donatella Kaelan, Hunter Gordon Max, Ahle Thomas, Crooks Gavin, Martinez Antonio J, Sbahi Faris, Coles Patrick J

机构信息

Normal Computing Corporation, New York, NY, USA.

出版信息

Nat Commun. 2025 Apr 22;16(1):3757. doi: 10.1038/s41467-025-59011-x.

Abstract

Recent breakthroughs in artificial intelligence (AI) algorithms have highlighted the need for alternative computing hardware in order to truly unlock the potential for AI. Physics-based hardware, such as thermodynamic computing, has the potential to provide a fast, low-power means to accelerate AI primitives, especially generative AI and probabilistic AI. In this work, we present a small-scale thermodynamic computer, which we call the stochastic processing unit. This device is composed of RLC circuits, as unit cells, on a printed circuit board, with 8 unit cells that are all-to-all coupled via switched capacitances. It can be used for either sampling or linear algebra primitives, and we demonstrate Gaussian sampling and matrix inversion on our hardware. The latter represents a thermodynamic linear algebra experiment. We envision that this hardware, when scaled up in size, will have significant impact on accelerating various probabilistic AI applications.

摘要

人工智能(AI)算法最近的突破凸显了对替代计算硬件的需求,以便真正释放AI的潜力。基于物理的硬件,如热力学计算,有潜力提供一种快速、低功耗的方式来加速AI原语,特别是生成式AI和概率AI。在这项工作中,我们展示了一种小型热力学计算机,我们称之为随机处理单元。该设备由印刷电路板上的RLC电路作为单元组成,有8个单元通过开关电容进行全对全耦合。它可用于采样或线性代数原语,我们在硬件上演示了高斯采样和矩阵求逆。后者代表了一个热力学线性代数实验。我们设想,这种硬件在规模扩大后,将对加速各种概率AI应用产生重大影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d174/12015238/17941844a540/41467_2025_59011_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验