de Leon Nathalie P, Itoh Kohei M, Kim Dohun, Mehta Karan K, Northup Tracy E, Paik Hanhee, Palmer B S, Samarth N, Sangtawesin Sorawis, Steuerman D W
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA.
School of Fundamental Science and Technology, Keio University, Yokohama 223-8522, Japan.
Science. 2021 Apr 16;372(6539). doi: 10.1126/science.abb2823.
Quantum computing hardware technologies have advanced during the past two decades, with the goal of building systems that can solve problems that are intractable on classical computers. The ability to realize large-scale systems depends on major advances in materials science, materials engineering, and new fabrication techniques. We identify key materials challenges that currently limit progress in five quantum computing hardware platforms, propose how to tackle these problems, and discuss some new areas for exploration. Addressing these materials challenges will require scientists and engineers to work together to create new, interdisciplinary approaches beyond the current boundaries of the quantum computing field.
在过去二十年中,量子计算硬件技术取得了进展,目标是构建能够解决经典计算机难以处理的问题的系统。实现大规模系统的能力取决于材料科学、材料工程和新制造技术的重大进展。我们确定了目前限制五个量子计算硬件平台进展的关键材料挑战,提出了解决这些问题的方法,并讨论了一些新的探索领域。应对这些材料挑战将需要科学家和工程师共同努力,创造超越量子计算领域当前界限的新的跨学科方法。