Lloyd Elisabeth C, Dhakal Sujata, Amini Shahrouz, Alhasan Rami, Fratzl Peter, Tree Douglas R, Morozova Svetlana, Hickey Robert J
Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA.
Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, USA.
Nat Commun. 2025 Apr 23;16(1):3792. doi: 10.1038/s41467-025-59171-w.
While hierarchical ordering is a distinctive feature of natural tissues and is directly responsible for their diverse and unique properties, efforts to synthesize biomaterials have primarily focused on using molecular-based approaches with little emphasis on multiscale structure. Here, we report a bottom-up self-assembly process to produce highly porous hydrogel fibers that resemble extracellular matrices both structurally and mechanically. Physically crosslinked nanostructured micelles form the walls of micrometer-sized water-rich pores with preferred orientation along the fiber direction. Low elastic moduli (<1 kPa), high elasticity (extending by more than 12 times the initial length), non-linear elasticity (e.g., hyperelasticity), and completely reversible extension are derived from unevenly distributed strain between the micrometer-sized pores and the polymer chains, which is reminiscent of cellular solids. Control of the material microstructure and orientation over many orders of magnitude (e.g., nm-μm), while holding the nanostructure constant, reveals how the multiscale structure directly impacts mechanical properties.
虽然层次有序是天然组织的一个显著特征,并直接决定了它们多样而独特的性质,但合成生物材料的努力主要集中在基于分子的方法上,而很少强调多尺度结构。在此,我们报告了一种自下而上的自组装过程,以生产在结构和力学上都类似于细胞外基质的高度多孔水凝胶纤维。物理交联的纳米结构胶束形成了微米级富水孔隙的壁,其沿纤维方向具有优先取向。低弹性模量(<1kPa)、高弹性(伸长超过初始长度的12倍)、非线性弹性(如超弹性)以及完全可逆的伸长,源于微米级孔隙和聚合物链之间不均匀分布的应变,这让人联想到多孔固体。在保持纳米结构不变的情况下,对跨越多个数量级(如纳米-微米)的材料微观结构和取向进行控制,揭示了多尺度结构如何直接影响力学性能。