Suppr超能文献

使用区域选择性拜耳-维利格单加氧酶生物催化生产3-羟基丙酸前体。

Biocatalytic production of 3-hydroxypropionic acid precursors using a regioselective Baeyer-Villiger monooxygenase.

作者信息

De Angelis Melissa, Correddu Danilo, Bucciol Fabio, Tabasso Silvia, Catucci Gianluca, Cravotto Giancarlo, Roggero Carlo, Gilardi Gianfranco, Sadeghi Sheila J

机构信息

Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, 10123, Italy.

Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 9, Torino, 10125, Italy.

出版信息

Sci Rep. 2025 Apr 22;15(1):13986. doi: 10.1038/s41598-025-96783-0.

Abstract

Baeyer-Villiger monooxygenases (BVMOs) are versatile biocatalysts that catalyse the oxidation of ketones to esters with high regio- and enantioselectivity, operating under mild reaction conditions while reducing hazardous waste. Some BVMOs can convert cellulose-derived alkyl levulinates to 3-acetoxypropionates (3-APs), which are key intermediates in the production of 3-hydroxypropionic acid (3-HP), a versatile building block chemical. In this study, a BVMO from Acinetobacter radioresistens (Ar-BVMO) was tested as a biocatalyst for the conversion of three marketed alkyl levulinates: methyl, ethyl and butyl levulinate. The enzyme showed 4-fold higher catalytic efficiency (k/K) and enhanced regioselectivity for the desired 3-AP product (4:1 ratio) when using butyl levulinate as a substrate. Escherichia coli whole-cells over-expressing Ar-BVMO were exploited to increase the product yield, achieving 85% conversion in 9 h. To further improve the sustainability of this biotransformation, butyl levulinate was obtained via microwave-assisted alcoholysis of pulp, a renewable cellulose feedstock, achieving 92.7% selectivity. Despite challenges posed by poor solubility of the resulting mixture in aqueous environment, Ar-BVMO in cell lysates was able to fully convert butyl levulinate within 24 h, efficiently producing 3-HP precursors without additional purification steps. These findings highlight the feasibility of this chemoenzymatic approach to convert cellulose-based raw materials to platform chemicals.

摘要

拜耳-维利格单加氧酶(BVMOs)是多功能生物催化剂,可在温和反应条件下将酮氧化为酯,具有高区域选择性和对映选择性,同时减少有害废物。一些BVMOs可将纤维素衍生的乙酰丙酸烷基酯转化为3-乙酰氧基丙酸酯(3-APs),3-APs是生产3-羟基丙酸(3-HP)的关键中间体,3-HP是一种通用的基础化学品。在本研究中,对来自抗辐射不动杆菌的BVMO(Ar-BVMO)作为生物催化剂用于三种市售乙酰丙酸烷基酯(甲基、乙基和丁基乙酰丙酸酯)的转化进行了测试。当使用丁基乙酰丙酸酯作为底物时,该酶对所需的3-AP产物显示出高4倍的催化效率(k/K)和增强的区域选择性(4:1比例)。利用过表达Ar-BVMO的大肠杆菌全细胞来提高产物产量,在9小时内实现了85%的转化率。为了进一步提高这种生物转化的可持续性,通过微波辅助纸浆醇解获得丁基乙酰丙酸酯,纸浆是一种可再生纤维素原料,选择性达到92.7%。尽管所得混合物在水性环境中的溶解度较差带来了挑战,但细胞裂解物中的Ar-BVMO能够在24小时内完全转化丁基乙酰丙酸酯,无需额外纯化步骤即可高效生产3-HP前体。这些发现突出了这种化学酶法将纤维素基原料转化为平台化学品的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb9c/12015234/04fcc8c4dc63/41598_2025_96783_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验