Hartoyo Agus, Ciupek Dominika, Malawski Maciej, Crimi Alessandro
Sano Centre for Computational Medicine, Kraków, Poland.
Telkom University, School of Computing, Bandung, Indonesia.
Sci Rep. 2025 Apr 22;15(1):13856. doi: 10.1038/s41598-025-96215-z.
This study explores the task of data reconstruction from machine learning models via inverse estimation and Bayesian inference, with the goal of recovering the original dataset solely based on the trained model. We introduce a novel theoretical framework that investigates the factors affecting the data reconstruction quality. Specifically, we derive expressions that quantify how variations in key variables influence the divergence between true and estimated posteriors by examining the concurrent behavior of their partial derivatives with respect to independent variables. This derivative-based approach establishes theoretical correlations between the variables, demonstrating that the fidelity of the recovered data is governed by two primary factors: (1) the accuracy of the assumed prior, and (2) the accuracy of the machine learning model. Empirical results across multiple benchmark datasets and machine learning algorithms corroborate these theoretical predictions, reinforcing the validity and robustness of our theoretical framework. Practically, our data reconstruction method enables the creation of synthetic models that closely replicate the performance of the original models. This work contributes to advancing the theoretical understanding and practical techniques for data reconstruction and model introspection within the context of machine learning.
本研究通过逆估计和贝叶斯推理探索从机器学习模型进行数据重建的任务,目标是仅基于训练好的模型恢复原始数据集。我们引入了一个新颖的理论框架,该框架研究影响数据重建质量的因素。具体而言,我们通过检查关键变量的偏导数相对于自变量的并发行为,推导出量化关键变量的变化如何影响真实后验与估计后验之间差异的表达式。这种基于导数的方法建立了变量之间的理论相关性,表明恢复数据的保真度由两个主要因素决定:(1)假设先验的准确性,以及(2)机器学习模型的准确性。跨多个基准数据集和机器学习算法的实证结果证实了这些理论预测,加强了我们理论框架的有效性和稳健性。实际上,我们的数据重建方法能够创建与原始模型性能紧密复制的合成模型。这项工作有助于推进机器学习背景下数据重建和模型内省的理论理解和实用技术。