Suppr超能文献

基于深度学习的电容层析成像基准数据集与图像重建。

A Benchmark Dataset and Deep Learning-Based Image Reconstruction for Electrical Capacitance Tomography.

机构信息

Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China.

Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.

出版信息

Sensors (Basel). 2018 Oct 31;18(11):3701. doi: 10.3390/s18113701.

Abstract

Electrical Capacitance Tomography (ECT) image reconstruction has developed for decades and made great achievements, but there is still a need to find a new theoretical framework to make it better and faster. In recent years, machine learning theory has been introduced in the ECT area to solve the image reconstruction problem. However, there is still no public benchmark dataset in the ECT field for the training and testing of machine learning-based image reconstruction algorithms. On the other hand, a public benchmark dataset can provide a standard framework to evaluate and compare the results of different image reconstruction methods. In this paper, a benchmark dataset for ECT image reconstruction is presented. Like the great contribution of ImageNet that transformed machine learning research, this benchmark dataset is hoped to be helpful for society to investigate new image reconstruction algorithms since the relationship between permittivity distribution and capacitance can be better mapped. In addition, different machine learning-based image reconstruction algorithms can be trained and tested by the unified dataset, and the results can be evaluated and compared under the same standard, thus, making the ECT image reconstruction study more open and causing a breakthrough.

摘要

电容层析成像(ECT)图像重建已经发展了几十年,取得了巨大的成就,但仍需要寻找新的理论框架,使其变得更好、更快。近年来,机器学习理论已被引入 ECT 领域,以解决图像重建问题。然而,在 ECT 领域,仍然没有用于基于机器学习的图像重建算法的训练和测试的公共基准数据集。另一方面,公共基准数据集可以为评估和比较不同图像重建方法的结果提供标准框架。在本文中,提出了一个用于 ECT 图像重建的基准数据集。就像 ImageNet 对机器学习研究的巨大贡献一样,希望这个基准数据集有助于社会研究新的图像重建算法,因为介电常数分布和电容之间的关系可以更好地映射。此外,可以通过统一的数据集训练和测试不同的基于机器学习的图像重建算法,并在相同的标准下评估和比较结果,从而使 ECT 图像重建研究更加开放并取得突破。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5030/6263896/74b10959d342/sensors-18-03701-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验