Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
BMC Med Inform Decis Mak. 2024 Jun 4;24(1):152. doi: 10.1186/s12911-024-02544-w.
Machine learning (ML) has emerged as the predominant computational paradigm for analyzing large-scale datasets across diverse domains. The assessment of dataset quality stands as a pivotal precursor to the successful deployment of ML models. In this study, we introduce DREAMER (Data REAdiness for MachinE learning Research), an algorithmic framework leveraging supervised and unsupervised machine learning techniques to autonomously evaluate the suitability of tabular datasets for ML model development. DREAMER is openly accessible as a tool on GitHub and Docker, facilitating its adoption and further refinement within the research community..
The proposed model in this study was applied to three distinct tabular datasets, resulting in notable enhancements in their quality with respect to readiness for ML tasks, as assessed through established data quality metrics. Our findings demonstrate the efficacy of the framework in substantially augmenting the original dataset quality, achieved through the elimination of extraneous features and rows. This refinement yielded improved accuracy across both supervised and unsupervised learning methodologies.
Our software presents an automated framework for data readiness, aimed at enhancing the integrity of raw datasets to facilitate robust utilization within ML pipelines. Through our proposed framework, we streamline the original dataset, resulting in enhanced accuracy and efficiency within the associated ML algorithms.
机器学习(ML)已成为分析跨多个领域的大规模数据集的主要计算范例。数据集质量评估是成功部署 ML 模型的关键前提。在这项研究中,我们引入了 DREAMER(用于机器学习研究的数据准备),这是一个利用监督和无监督机器学习技术的算法框架,能够自主评估表格数据集是否适合 ML 模型开发。DREAMER 可作为 GitHub 和 Docker 上的工具公开访问,便于在研究社区中采用和进一步改进。
本研究中提出的模型应用于三个不同的表格数据集,通过使用既定的数据质量指标评估,这些数据集在准备用于 ML 任务方面的质量得到了显著提高。我们的研究结果表明,该框架通过消除多余的特征和行,极大地提高了原始数据集的质量,从而有效地增强了原始数据集的质量。这种改进提高了监督和无监督学习方法的准确性。
我们的软件提供了一个自动化的数据准备框架,旨在提高原始数据集的完整性,以促进在 ML 管道中的稳健利用。通过我们提出的框架,我们对原始数据集进行了精简,从而提高了相关 ML 算法的准确性和效率。