Suppr超能文献

在大学心理健康诊所中,基于机器学习利用非自杀性预测因素识别自杀意念。

Machine learning based identification of suicidal ideation using non-suicidal predictors in a university mental health clinic.

作者信息

Ballı Muhammed, Dogan Asli Ercan, Senol Sevin Hun, Eser Hale Yapici

机构信息

Neuroscience PhD Program, Koç University Graduate School of Health Sciences, Koç University , Istanbul, Türkiye.

Department of Psychiatry, Koç University School of Medicine, Istanbul, Türkiye.

出版信息

Sci Rep. 2025 Apr 22;15(1):13843. doi: 10.1038/s41598-025-97387-4.

Abstract

Suicide causes over 700,000 deaths annually worldwide. Mental disorders are closely linked to suicidal ideation, but predicting suicide remains complex due to the multifaceted nature of contributing factors. Traditional assessment tools often fail to capture the interactions that drive suicidal thoughts, underscoring the need for more sophisticated predictive approaches. This study aimed to predict suicidal and self-harm ideation among university students using machine learning models without relying on suicidal behavior related predictors. The goal was to uncover less obvious risk factors and provide deeper insights into the complex relationships between psychiatric symptoms and suicidal ideation. Data from 924 university students seeking mental health services were analyzed using seven machine learning algorithms. Suicidal ideation was assessed through the 9th item of the Patient Health Questionnaire-9. Three predictive models were developed, with the final model utilizing only subdomains from the DSM-5 Level 1 Self Rated Cross-Cutting Symptom Measure. Feature importance was assessed using SHAP and Integrated Gradients techniques. To ensure model generalizability, the best-performing model was externally validated on a separate dataset of 361 individuals. Machine learning models achieved strong predictive accuracy, with logistic regression and neural networks reaching AUC values of 0.80. The final model achieved an AUC of 0.80 on the training data and 0.79 on external validation data. Key predictors of suicidal ideation included personality functioning and depressed mood (both increasing the likelihood), while anxiety and repetitive thoughts were associated with a decreased likelihood. The use of non-suicidal predictors across datasets highlighted psychiatric dimensions relevant to early intervention. This study demonstrates the effectiveness of machine learning in predicting suicidal ideation without relying on suicide-specific inputs. The findings emphasize the critical roles of personality functioning, mood, and anxiety in shaping suicidal ideation. These insights can enhance early detection and personalized interventions, especially in individuals reluctant to disclose suicidal thoughts.

摘要

自杀每年在全球导致超过70万人死亡。精神障碍与自杀意念密切相关,但由于促成因素具有多面性,预测自杀仍然很复杂。传统的评估工具往往无法捕捉到导致自杀念头的相互作用,这凸显了需要更复杂的预测方法。本研究旨在使用机器学习模型预测大学生中的自杀和自伤意念,而不依赖与自杀行为相关的预测因素。目标是发现不太明显的风险因素,并更深入地了解精神症状与自杀意念之间的复杂关系。使用七种机器学习算法分析了924名寻求心理健康服务的大学生的数据。通过患者健康问卷-9的第9项评估自杀意念。开发了三个预测模型,最终模型仅使用《精神疾病诊断与统计手册》第5版一级自评交叉症状量表的子领域。使用SHAP和集成梯度技术评估特征重要性。为确保模型的通用性,在一个由361人组成的单独数据集上对表现最佳的模型进行了外部验证。机器学习模型取得了很强的预测准确性,逻辑回归和神经网络的AUC值达到0.80。最终模型在训练数据上的AUC为0.80,在外部验证数据上的AUC为0.79。自杀意念的关键预测因素包括人格功能和抑郁情绪(两者均增加可能性),而焦虑和反复思考则与可能性降低相关。跨数据集使用非自杀性预测因素突出了与早期干预相关的精神维度。本研究证明了机器学习在不依赖自杀特定输入的情况下预测自杀意念的有效性。研究结果强调了人格功能、情绪和焦虑在形成自杀意念中的关键作用。这些见解可以加强早期发现和个性化干预,特别是在那些不愿透露自杀想法的个体中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78d0/12015358/4848a2343d82/41598_2025_97387_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验