Suppr超能文献

用于预测腹膜透析患者心血管事件的可解释机器学习算法。

Explainable machine learning algorithm to predict cardiovascular event in patients undergoing peritoneal dialysis.

作者信息

Yan Qiqi, Liu Guiling, Wang Ruifeng, Li Dandan, Chen Xiaoli, Cong Jingjing, Wang Deguang

机构信息

Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.

Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.

出版信息

BMC Med Inform Decis Mak. 2025 Apr 22;25(1):172. doi: 10.1186/s12911-025-03003-w.

Abstract

OBJECTIVE

To compare the performance of predictive models for cardiovascular event (CVE) in patients undergoing peritoneal dialysis (PD) based on machine learning algorithm and Cox proportional hazard regression.

METHODS

This study included patients underwent PD catheterization in our center from January 1, 2010, to July 31, 2022. The patients were randomly divided into training and validation sets in a 7:3 ratio. Cox regression, extreme gradient boosting (XGBoost), and random survival forest (RSF) models were developed using the training set and validated using the validation set. The time-dependent area under the curve (AUC) and concordance index (C-index) were used to evaluate the discriminative ability of predictive models.

RESULTS

A total of 318 patients were enrolled in this study. 110 (34.6%) patients developed CVE during the median follow-up of 31(16,56) months. The RSF model had better predictive performance, with a C-index of 0.725 and 1-, 3-, and 5-year time-dependent AUC of 0.812, 0.836, and 0.706 in the validation set, respectively. The top 5 important variables identified were platelet count, age, 4 hD/Pcr, left atrium diameter, and left ventricular diameter. Patients were classified into high-risk and low-risk groups based on the cut-off risk score calculated using the maximally selected rank statistics in the validation set. The log-rank test showed a significant difference in cumulative CVE-free survival probability between the two groups.

CONCLUSION

The RSF model may be a useful method for evaluating CVE risk in PD patients.

摘要

目的

基于机器学习算法和Cox比例风险回归,比较腹膜透析(PD)患者心血管事件(CVE)预测模型的性能。

方法

本研究纳入2010年1月1日至2022年7月31日在本中心接受PD置管的患者。患者按7:3的比例随机分为训练集和验证集。使用训练集构建Cox回归、极端梯度提升(XGBoost)和随机生存森林(RSF)模型,并使用验证集进行验证。采用时间依赖性曲线下面积(AUC)和一致性指数(C指数)评估预测模型的判别能力。

结果

本研究共纳入318例患者。在31(16,56)个月的中位随访期内,110例(34.6%)患者发生CVE。RSF模型具有更好的预测性能,在验证集中C指数为0.725,1年、3年和5年的时间依赖性AUC分别为0.812、0.836和0.706。确定的前5个重要变量为血小板计数、年龄、4 hD/Pcr、左心房直径和左心室直径。根据验证集中使用最大选择秩统计量计算的截断风险评分,将患者分为高风险和低风险组。对数秩检验显示两组之间累积无CVE生存概率存在显著差异。

结论

RSF模型可能是评估PD患者CVE风险的一种有用方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4308/12016290/9e311c5367b3/12911_2025_3003_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验