Suppr超能文献

在马萨诸塞州波士顿社区卫生中心成员的吸烟/吸电子烟研究(2020 - 2022年)中,使用隐性和显性测量方法分析多种类型的歧视,比较目标群体与主导群体。

Analyzing multiple types of discrimination using implicit and explicit measures, comparing target vs. Dominant groups, in a study of smoking/vaping among community health center members in Boston, Massachusetts (2020-2022).

作者信息

Reisner Sari L, Johnson Nykesha, Chen Jarvis T, Marini Maddalena, LeBlanc Merrily E, Mayer Kenneth H, Oendari Apriani, Bright Donna M, Callender Sharon, Valdez Guale, Khan Tanveer, Krieger Nancy

机构信息

Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA.

Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

出版信息

Int J Equity Health. 2025 Apr 22;24(1):110. doi: 10.1186/s12939-025-02456-9.

Abstract

BACKGROUND

In the United States (U.S.), the physical and mental health sequelae of diverse types of discrimination are far-reaching, severe, and contribute to population health inequities, with this work informing research on discrimination and health in both the Global North and Global South. To date, limited population health research has examined the joint impacts of discrimination measures that are explicit (i.e., self-report) and implicit (i.e., automatic mental representations), both singly and for multiple types of discrimination.

METHODS

Between May 28, 2020-August 4, 2022, we conducted Life + Health, a cross-sectional population-based study regarding six types of discrimination-racism, sexism, heterosexism, cissexism, ageism, and sizeism-with 699 participants (US-born, ages 25-64) from three community health centers in Boston, Massachusetts. Participants completed a Brief Implicit Association Test (B-IAT) and self-reported survey. Spearman's correlation coefficient was estimated to assess the strength and direction of discrimination types across target/dominant groups; logistic regression models were fit to assess the association of each type of discrimination with smoking/vaping following by random-effects meta-regression modeling to pool effects across discrimination types.

RESULTS

Mean age was 37.9 years (SD = 11.2 years). Overall, 31.6% were people of color; 31.8% identified as transgender or nonbinary/genderqueer; 68.6% were sexual minority. For education, 20.5% had some college/vocational school or no college. Current cigarette/vaping was reported by 15.4% of the study population. Implicit and explicit measures were generally correlated with one another, but associations varied across discrimination types and for target/dominant groups. In random-effects meta-regression modeling, explicit compared to implicit discrimination measures were associated with a 1.18 (95% CI = 1.00-1.39) greater odds of smoking/vaping among dominant group members, but no such difference was observed among target group members.

CONCLUSION

Implicit and explicit discrimination measures yielded distinct yet complementary insights, highlighting the importance of both. Meta-regression provided evidence of health impacts across discrimination types. Future research on discrimination and health, in diverse country contexts, should consider using both implicit and explicit measures to analyze health impacts across multiple types of discrimination.

摘要

背景

在美国,各种形式歧视所带来的身心健康后遗症影响深远、后果严重,加剧了人群健康的不平等,这项研究为全球北方和南方关于歧视与健康的研究提供了参考。迄今为止,针对明确(即自我报告)和隐性(即自动心理表征)歧视措施的联合影响进行的人群健康研究有限,且未对单一及多种类型的歧视进行考察。

方法

在2020年5月28日至2022年8月4日期间,我们开展了“生活与健康”研究,这是一项基于人群的横断面研究,涉及六种类型的歧视——种族主义、性别歧视、异性恋歧视、顺性别歧视、年龄歧视和体型歧视,研究对象为来自马萨诸塞州波士顿三个社区卫生中心的699名参与者(出生于美国,年龄在25至64岁之间)。参与者完成了一项简短的内隐联想测验(B - IAT)和自我报告调查。通过估计斯皮尔曼相关系数来评估不同目标/优势群体间歧视类型的强度和方向;采用逻辑回归模型评估每种歧视类型与吸烟/吸电子烟之间的关联,随后通过随机效应元回归模型汇总不同歧视类型的效应。

结果

平均年龄为37.9岁(标准差 = 11.2岁)。总体而言,31.6%为有色人种;31.8%被认定为跨性别者或非二元性别/性别酷儿;68.6%为性少数群体。在教育程度方面,20.5%的人上过一些大学/职业学校或未上过大学。研究人群中15.4%的人报告目前有吸烟/吸电子烟行为。隐性和显性测量指标通常相互关联,但不同歧视类型以及目标/优势群体间的关联有所不同。在随机效应元回归模型中,与隐性歧视措施相比,显性歧视措施与优势群体成员吸烟/吸电子烟的几率高出1.18倍(95%置信区间 = 1.00 -

1.39)相关,但在目标群体成员中未观察到此类差异。

结论

隐性和显性歧视测量指标产生了不同但互补的见解,凸显了两者的重要性。元回归为不同歧视类型对健康的影响提供了证据。未来在不同国家背景下开展的关于歧视与健康的研究,应考虑同时使用隐性和显性测量指标来分析多种类型歧视对健康的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9878/12016388/b789c40f6b91/12939_2025_2456_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验