Suppr超能文献

利用智能手机照片对结直肠癌术后造口患者刺激性皮炎进行诊断:一种深度学习方法。

Diagnosis of Irritant Dermatitis in Colorectal Cancer Postoperative Stoma Patients Using Smartphone Photographs: A Deep Learning Approach.

作者信息

Zhang Xu, Xu Wei, Xu Zheng, Tong Henry H Y, Jiao Xueping, Li Kefeng, Wang Zhiwen

机构信息

School of Nursing, Peking University, Beijing, People's Republic of China.

Faculty of Applied Sciences, Macao Polytechnic University, Macao, People's Republic of China.

出版信息

J Multidiscip Healthc. 2025 Apr 18;18:2215-2223. doi: 10.2147/JMDH.S515644. eCollection 2025.

Abstract

BACKGROUND

Irritant dermatitis is a common complication among stoma patients, significantly impacting their quality of life. Early diagnosis is essential, but limited access to healthcare and poor self-management skills often delay treatment. This study aimed to assess the effectiveness of two advanced convolutional neural networks (CNNs), ConvNeXt and MobileViT, for the intelligent diagnosis of irritant dermatitis using smartphone-acquired stoma images.

METHODS

A retrospective observational study was conducted, collecting 825 stoma complication images from five tertiary hospitals in China. Data preprocessing techniques such as resampling and enhancement were used to prepare the dataset. The ConvNeXt and MobileViT models were trained and evaluated based on accuracy, precision, recall, and F1 scores. Optimizers and learning rates were also adjusted to assess model performance.

RESULTS

ConvNeXt demonstrated superior performance, achieving an accuracy of 71.4%, precision of 73.6%, recall of 67.1%, and an F1 score of 70.2% with the Adam optimizer and a 0.001 learning rate. MobileViT, despite being more lightweight, did not surpass ConvNeXt, with a maximum accuracy of 64.4%. ConvNeXt excelled in diagnosing irritant dermatitis and normal stoma conditions but showed limitations in recognizing other complications.

CONCLUSION

The ConvNeXt model outperformed MobileViT, indicating that advanced CNNs can effectively assist in the early diagnosis of irritant dermatitis among stoma patients. This could help alleviate the burden on healthcare resources and improve patient outcomes through accessible mobile-based diagnostic tools.

摘要

背景

刺激性皮炎是造口患者常见的并发症,严重影响他们的生活质量。早期诊断至关重要,但医疗服务获取受限和自我管理技能较差常常延误治疗。本研究旨在评估两种先进的卷积神经网络(ConvNeXt和MobileViT)利用智能手机获取的造口图像对刺激性皮炎进行智能诊断的有效性。

方法

开展一项回顾性观察研究,从中国五家三级医院收集825张造口并发症图像。使用重采样和增强等数据预处理技术来准备数据集。基于准确率、精确率、召回率和F1分数对ConvNeXt和MobileViT模型进行训练和评估。还调整了优化器和学习率以评估模型性能。

结果

ConvNeXt表现出卓越的性能,在使用Adam优化器和0.001学习率时,准确率达到71.4%,精确率为73.6%,召回率为67.1%,F1分数为70.2%。MobileViT尽管更轻量级,但未超过ConvNeXt,最高准确率为64.4%。ConvNeXt在诊断刺激性皮炎和正常造口状况方面表现出色,但在识别其他并发症方面存在局限性。

结论

ConvNeXt模型优于MobileViT,表明先进的卷积神经网络可以有效辅助造口患者刺激性皮炎的早期诊断。这有助于减轻医疗资源负担,并通过便捷的基于移动设备的诊断工具改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca84/12013826/e4c4d504e369/JMDH-18-2215-g0001.jpg

相似文献

1
Diagnosis of Irritant Dermatitis in Colorectal Cancer Postoperative Stoma Patients Using Smartphone Photographs: A Deep Learning Approach.
J Multidiscip Healthc. 2025 Apr 18;18:2215-2223. doi: 10.2147/JMDH.S515644. eCollection 2025.
2
Convolutional Neural Networks (CNNs) for Pneumonia Classification on Pediatric Chest Radiographs.
Cureus. 2023 Aug 25;15(8):e44130. doi: 10.7759/cureus.44130. eCollection 2023 Aug.
3
HI-MViT: A lightweight model for explainable skin disease classification based on modified MobileViT.
Digit Health. 2023 Oct 12;9:20552076231207197. doi: 10.1177/20552076231207197. eCollection 2023 Jan-Dec.
4
Enhancing Melanoma Diagnosis with Advanced Deep Learning Models Focusing on Vision Transformer, Swin Transformer, and ConvNeXt.
Dermatopathology (Basel). 2024 Aug 15;11(3):239-252. doi: 10.3390/dermatopathology11030026.
5
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.
Cancer Biomark. 2025 Mar;42(3):18758592241311184. doi: 10.1177/18758592241311184. Epub 2025 Apr 4.
6
Mushroom image classification and recognition based on improved ConvNeXt V2.
J Food Sci. 2025 Mar;90(3):e70133. doi: 10.1111/1750-3841.70133.
7
Advancing Prostate Cancer Diagnostics: A ConvNeXt Approach to Multi-Class Classification in Underrepresented Populations.
Bioengineering (Basel). 2025 Apr 1;12(4):369. doi: 10.3390/bioengineering12040369.
9
Classification of dry and wet macular degeneration based on the ConvNeXT model.
Front Comput Neurosci. 2022 Dec 8;16:1079155. doi: 10.3389/fncom.2022.1079155. eCollection 2022.
10
Enhanced Pneumonia Detection in Chest X-Rays Using Hybrid Convolutional and Vision Transformer Networks.
Curr Med Imaging. 2025;21:e15734056326685. doi: 10.2174/0115734056326685250101113959.

本文引用的文献

1
Skin Cancer Recognition Using Unified Deep Convolutional Neural Networks.
Cancers (Basel). 2024 Mar 22;16(7):1246. doi: 10.3390/cancers16071246.
2
Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2024 May-Jun;74(3):229-263. doi: 10.3322/caac.21834. Epub 2024 Apr 4.
3
Artificial Intelligence in Telemedicine: A Global Perspective Visualization Analysis.
Telemed J E Health. 2024 Jun;30(7):e1909-e1922. doi: 10.1089/tmj.2023.0704. Epub 2024 Mar 1.
6
CE: Nursing Care for Patients After Ostomy Surgery.
Am J Nurs. 2023 Aug 1;123(8):34-41. doi: 10.1097/01.NAJ.0000947460.38199.fe.
7
Peristomal Skin Complications: Detailed Analysis of a Web-Based Survey and Predictive Risk Factors.
Healthcare (Basel). 2023 Jun 21;11(13):1823. doi: 10.3390/healthcare11131823.
8
Diabetic Foot Ulcer Identification: A Review.
Diagnostics (Basel). 2023 Jun 7;13(12):1998. doi: 10.3390/diagnostics13121998.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验