Fonseca Susanne Suely Santos, S Port's Natacha M, Aguiar Gisele Priscila Soares, Botelho Eliã P, Couto Nádia M G, Pinheiro Wandson Braamcamp Souza, Khayat André Salim, Yamada Elizabeth S, Costa Edmar T, Sena Chubert Bernardo C, Arruda Mara Silvia P, Bahia Carlomagno P, Pereira Antonio
Institute of Technology, Federal University of Pará, Belém, Pará, Brazil.
Oncology Research Center, Hospital University João of Barros Barreto, Federal University of Pará, Belém, Pará, Brazil.
Front Pharmacol. 2025 Apr 8;16:1558726. doi: 10.3389/fphar.2025.1558726. eCollection 2025.
The biphasic dose-response behavior, also known as hormesis, is a characteristic feature of numerous natural products. It is defined by beneficial effects at low concentrations and toxicity at higher doses. This study investigates the hormetic effects of Brosimine B, a flavonoid derived from Brosimum acutifolium, on retinal cell viability under oxidative stress.
To simulate ischemic conditions, we used an oxygen-glucose deprivation (OGD) model. Retinal cells were treated with varying concentrations of Brosimine B, and analyses of cell viability, reactive oxygen species (ROS) production, and antioxidant enzyme activity were performed.
Brosimine B at 10 µM significantly enhanced cell viability and reduced ROS production, likely through modulation of oxidative stress-protective enzymes such as catalase. However, higher concentrations (>10 µM) induced cytotoxic effects. A computational modeling approach using a hormetic (inverted U-shaped) model revealed biologically interpretable parameters, including a peak response at 10.2 µM and a hormetic zone width (σ = 6.5 µM) (R = 0.984).
These results confirm that Brosimine B exhibits hormetic neuroprotective effects within a well-defined concentration window, supporting its potential as a therapeutic agent for oxidative stress-related retinal damage. The study highlights the value of computational modeling in optimizing dose-response analyses, offering a framework for refining natural product therapies and predicting toxicological thresholds in pharmacological applications.
双相剂量反应行为,也称为兴奋效应,是众多天然产物的一个特征。它的定义是低浓度时有有益作用,高剂量时有毒性。本研究调查了从尖叶牛乳树中提取的黄酮类化合物溴西明B在氧化应激下对视网膜细胞活力的兴奋效应。
为了模拟缺血条件,我们使用了氧-葡萄糖剥夺(OGD)模型。用不同浓度的溴西明B处理视网膜细胞,并进行细胞活力、活性氧(ROS)产生和抗氧化酶活性分析。
10μM的溴西明B显著提高了细胞活力并减少了ROS的产生,可能是通过调节过氧化氢酶等氧化应激保护酶来实现的。然而,更高浓度(>10μM)会诱导细胞毒性作用。使用兴奋效应(倒U形)模型的计算建模方法揭示了具有生物学可解释性的参数,包括在10.2μM处的峰值反应和兴奋效应区宽度(σ = 6.5μM)(R = 0.984)。
这些结果证实,溴西明B在明确的浓度窗口内表现出兴奋效应的神经保护作用,支持其作为氧化应激相关视网膜损伤治疗剂的潜力。该研究强调了计算建模在优化剂量反应分析中的价值,为改进天然产物疗法和预测药理学应用中的毒理学阈值提供了一个框架。