Kim Christopher, Li Biao, Nakamura Sayaka, Neely Eric J, Rockel Jason S, Oussenko Tatiana, Zhang Puzheng, Kapoor Mohit, Nagy Andras
Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
Front Cell Dev Biol. 2025 Apr 8;13:1559155. doi: 10.3389/fcell.2025.1559155. eCollection 2025.
Osteoarthritis (OA) is a common chronic inflammatory joint disease, in which innate immunity plays a pivotal role in pathogenesis. Anti-interleukin-1(IL-1) therapies have shown inconsistent results in clinical trials, potentially due to a mismatch in the spatial and temporal dynamics of interleukin-1beta (IL-1β) production and therapeutic interventions. To address this issue, we developed a novel IL-1β "sticky-trap" utilizing cell and gene-based technologies from our lab and evaluated its efficacy in reducing osteoarthritis progression using a murine destabilization of the medial meniscus (DMM) OA model and a compact bone-derived mesenchymal stromal cell (MSC)-based gene expression system. The extracellular domain of interleukin-1 receptor 2 (IL1R2) was employed to design the sticky IL1R2 trap (stkIL1R2). A murine compact bone-derived MSC line was engineered for gene delivery. Although stkIL1R2 was undetectable in the engineered MSC supernatants by enzyme-linked immunosorbent assay (ELISA) and Western blot, it was localized on the cell surface and extracellular matrix (ECM) and demonstrated specific binding to IL-1β using a fluorescent protein-fused binding assay. Doxycycline (Dox)-induced expression of stkIL1R2 significantly inhibited lipocalin-2 (LCN2) expression which is a biomarker of IL-1β activity. For experiments, 5 × 10 Dox-inducible stkIL1R2f expressing MSCs were injected into the knee joints of DMM mice. Bioluminescence imaging revealed MSC survival in the knee joints for up to 7 weeks post-injection. Histological analyses at 10 weeks post-injection, including Safranin-O and Masson trichrome staining, showed that stkIL1R2 treated joints exhibited significantly less cartilage degradation and synovitis compared to controls, as assessed by Osteoarthritis Research Society International (OARSI) scoring of the femur, tibia, and synovium. Moreover, stkIL1R2 treatment reduced matrix metalloproteinases-13 (MMP-13) positive cells and collagen type II degradation in the affected joints. In conclusion, we developed a MSC line expressing an inducible IL1 sticky-trap, which localized to the cell surface and ECM and specifically bound IL-1β. These engineered MSCs survived in normal and DMM knee joints for up to 7 weeks and significantly delayed OA progression and inflammation in the murine model. This study introduces a promising therapeutic approach to combat OA progression.
骨关节炎(OA)是一种常见的慢性炎症性关节疾病,其中固有免疫在发病机制中起关键作用。抗白细胞介素-1(IL-1)疗法在临床试验中显示出不一致的结果,这可能是由于白细胞介素-1β(IL-1β)产生的时空动态与治疗干预措施不匹配所致。为了解决这个问题,我们利用实验室的细胞和基因技术开发了一种新型的IL-1β“粘性陷阱”,并使用小鼠内侧半月板不稳定(DMM)骨关节炎模型和基于致密骨来源的间充质基质细胞(MSC)的基因表达系统评估了其在减缓骨关节炎进展方面的疗效。采用白细胞介素-1受体2(IL1R2)的细胞外结构域设计粘性IL1R2陷阱(stkIL1R2)。构建了一种用于基因递送的小鼠致密骨来源的MSC系。尽管通过酶联免疫吸附测定(ELISA)和蛋白质印迹法在工程化的MSC上清液中未检测到stkIL1R2,但它定位于细胞表面和细胞外基质(ECM),并通过荧光蛋白融合结合试验证明其与IL-1β具有特异性结合。强力霉素(Dox)诱导的stkIL1R2表达显著抑制了作为IL-1β活性生物标志物的脂质运载蛋白-2(LCN2)的表达。在实验中,将5×10个表达Dox诱导型stkIL1R2f的MSC注射到DMM小鼠的膝关节中。生物发光成像显示注射后长达7周MSC在膝关节中存活。注射后10周的组织学分析,包括番红O和Masson三色染色,显示与对照组相比,经stkIL1R2处理的关节软骨降解和滑膜炎明显减轻,这是通过国际骨关节炎研究学会(OARSI)对股骨、胫骨和滑膜的评分来评估的。此外,stkIL1R2治疗减少了受影响关节中基质金属蛋白酶-13(MMP-13)阳性细胞和II型胶原降解。总之,我们开发了一种表达可诱导IL1粘性陷阱的MSC系,其定位于细胞表面和ECM,并特异性结合IL-1β。这些工程化的MSC在正常和DMM膝关节中存活长达7周,并显著延缓了小鼠模型中的OA进展和炎症。本研究引入了一种有前景的治疗方法来对抗OA进展。