Ibragić Saida, Dahija Sabina, Karalija Erna
Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina.
Laboratory for Plant Physiology, Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina.
Epigenomes. 2025 Mar 29;9(2):10. doi: 10.3390/epigenomes9020010.
Plants face a wide range of environmental stresses that disrupt growth and productivity. To survive and adapt, they undergo complex metabolic reprogramming by redirecting carbon and nitrogen fluxes toward the biosynthesis of protective secondary metabolites such as phenylpropanoids, flavonoids, and lignin. Recent research has revealed that these stress-induced metabolic processes are tightly regulated by epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs.
This review synthesizes current findings from studies on both model and crop plants, examining the roles of key epigenetic regulators in controlling secondary metabolism under stress. Special focus is placed on dynamic changes in DNA methylation, histone acetylation, and the action of small RNAs such as siRNAs and miRNAs in transcriptional and post-transcriptional regulation.
Evidence indicates that stress triggers rapid and reversible epigenetic modifications that modulate gene expression linked to secondary metabolic pathways. These modifications not only facilitate immediate metabolic responses but can also contribute to stress memory. In some cases, this memory is retained and transmitted to the next generation, influencing progeny stress responses. However, critical knowledge gaps remain, particularly concerning the temporal dynamics, tissue specificity, and long-term stability of these epigenetic marks in crops.
Understanding how epigenetic regulation governs secondary metabolite production offers promising avenues to enhance crop resilience and productivity in the context of climate change. Future research should prioritize dissecting the stability and heritability of these modifications to support the development of epigenetically informed breeding strategies.
植物面临着广泛的环境胁迫,这些胁迫会扰乱生长和生产力。为了生存和适应,它们通过将碳和氮通量重新导向保护性次生代谢物(如苯丙烷类、黄酮类和木质素)的生物合成来进行复杂的代谢重编程。最近的研究表明,这些胁迫诱导的代谢过程受到表观遗传机制的严格调控,包括DNA甲基化、组蛋白修饰、染色质重塑和非编码RNA。
本综述综合了对模式植物和作物的研究中的当前发现,研究了关键表观遗传调节因子在胁迫下控制次生代谢中的作用。特别关注DNA甲基化、组蛋白乙酰化的动态变化,以及小RNA(如siRNA和miRNA)在转录和转录后调控中的作用。
有证据表明,胁迫会触发快速且可逆的表观遗传修饰,这些修饰会调节与次生代谢途径相关的基因表达。这些修饰不仅有助于立即产生代谢反应,还可能有助于形成胁迫记忆。在某些情况下,这种记忆会被保留并传递给下一代,影响后代的胁迫反应。然而,关键的知识空白仍然存在,特别是关于这些表观遗传标记在作物中的时间动态、组织特异性和长期稳定性。
了解表观遗传调控如何控制次生代谢物的产生,为在气候变化背景下提高作物的抗逆性和生产力提供了有前景的途径。未来的研究应优先剖析这些修饰的稳定性和遗传性,以支持制定基于表观遗传学的育种策略。