Suppr超能文献

基于转录组学和靶向代谢组学对西兰花()小花颜色形成机制的初步分析。

Preliminary Analysis of the Formation Mechanism of Floret Color in Broccoli () Based on Transcriptomics and Targeted Metabolomics.

作者信息

Shao Qingqing, Chen Mindong, Cheng Saichuan, Lin Huangfang, Lin Biying, Lin Honghui, Liu Jianting, Zhu Haisheng

机构信息

Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China.

College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350000, China.

出版信息

Plants (Basel). 2025 Mar 8;14(6):849. doi: 10.3390/plants14060849.

Abstract

Floret color is a crucial phenotypic trait in broccoli, serving as an indicator of maturity and determining its market value. However, the mechanisms underlying color variation remain unclear. In this study, six broccoli varieties with different floret colors at harvest were chosen as materials. The color difference and pigment content of florets were measured, and a combined analysis of anthocyanin-targeted metabolome and transcriptome was conducted. Our findings revealed that chlorophyll a primarily influences green, yellow-green, and light green coloration, while the wax content may contribute to gray-green coloration. The blue-green and dark blue-green coloration are regulated by both chlorophyll a and anthocyanins. Targeted metabolomics identified five anthocyanin compounds, with peonidin-3-O-glucoside as a key metabolite for blue-green coloration and delphinidin-3-O-glucoside-5-O-galactoside and peonidin-3,5-O-diglucoside for dark blue-green coloration. Transcriptomic analysis identified CHLG as a potential key regulator for yellow-green and light-green floret coloration. The blue-green coloration appears to be coregulated by a combination of genes, including the chlorophyll biosynthesis gene HEMF; anthocyanin biosynthesis genes (PAL, FLS, and UGT); and chlorophyll degradation genes (SGR, PPD, and NYC). Furthermore, upstream genes involved in both chlorophyll metabolism (CHLI, CHLD, CHLM, DVR, and CLH) and anthocyanin biosynthesis (PAL, 4CL, CHS, F3'H, and FLS) play crucial roles in determining the dark blue-green coloration of florets. Meanwhile, transcription factors of the WRKY, NAC, and TCP families are involved in chlorophyll metabolism, while those of the bHLH and MYB families participate in anthocyanin synthesis. The WGCNA identified one Hub gene for chlorophyll metabolism and two for anthocyanin synthesis. In conclusion, 35 candidate genes were identified, including 21 involved in chlorophyll metabolism and 14 in anthocyanin biosynthesis. This study provides novel insights into the molecular mechanisms of floret coloration and establishes a foundation for molecular breeding in broccoli.

摘要

花球颜色是西兰花的一个关键表型性状,是成熟度的指标并决定其市场价值。然而,颜色变异背后的机制仍不清楚。在本研究中,选择了六个收获时具有不同花球颜色的西兰花品种作为材料。测量了花球的色差和色素含量,并对花青素靶向代谢组和转录组进行了联合分析。我们的研究结果表明,叶绿素a主要影响绿色、黄绿色和浅绿色,而蜡质含量可能导致灰绿色。蓝绿色和深蓝绿色受叶绿素a和花青素共同调控。靶向代谢组学鉴定出五种花青素化合物,芍药素-3-O-葡萄糖苷是蓝绿色的关键代谢物,飞燕草素-3-O-葡萄糖苷-5-O-半乳糖苷和芍药素-3,5-O-二葡萄糖苷是深蓝绿色的关键代谢物。转录组分析确定CHLG是黄绿色和浅绿色花球颜色的潜在关键调节因子。蓝绿色似乎由多种基因共同调控,包括叶绿素生物合成基因HEMF;花青素生物合成基因(PAL、FLS和UGT);以及叶绿素降解基因(SGR、PPD和NYC)。此外,参与叶绿素代谢(CHLI、CHLD、CHLM、DVR和CLH)和花青素生物合成(PAL、4CL、CHS、F3'H和FLS)的上游基因在决定花球深蓝绿色方面起关键作用。同时,WRKY、NAC和TCP家族的转录因子参与叶绿素代谢,而bHLH和MYB家族的转录因子参与花青素合成。加权基因共表达网络分析(WGCNA)确定了一个叶绿素代谢的中心基因和两个花青素合成的中心基因。总之,鉴定出35个候选基因,包括21个参与叶绿素代谢的基因和14个参与花青素生物合成的基因。本研究为花球着色的分子机制提供了新的见解,并为西兰花的分子育种奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/295f/11945052/0d3ffee39448/plants-14-00849-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验