Suppr超能文献

超分辨率深度学习重建用于评估磁共振脊髓造影上的腰椎管狭窄状态。

Super-resolution deep learning reconstruction to evaluate lumbar spinal stenosis status on magnetic resonance myelography.

作者信息

Yasaka Koichiro, Asari Yusuke, Morita Yuichi, Kurokawa Mariko, Tajima Taku, Akai Hiroyuki, Yoshioka Naoki, Akahane Masaaki, Ohtomo Kuni, Abe Osamu, Kiryu Shigeru

机构信息

Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.

Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan.

出版信息

Jpn J Radiol. 2025 Apr 23. doi: 10.1007/s11604-025-01787-5.

Abstract

PURPOSE

To investigate whether super-resolution deep learning reconstruction (SR-DLR) of MR myelography-aided evaluations of lumbar spinal stenosis.

MATERIAL AND METHODS

In this retrospective study, lumbar MR myelography of 40 patients (16 males and 24 females; mean age, 59.4 ± 31.8 years) were analyzed. Using the MR imaging data, MR myelography was separately reconstructed via SR-DLR, deep learning reconstruction (DLR), and conventional zero-filling interpolation (ZIP). Three radiologists, blinded to patient background data and MR reconstruction information, independently evaluated the image sets in terms of the following items: the numbers of levels affected by lumbar spinal stenosis; and cauda equina depiction, sharpness, noise, artifacts, and overall image quality.

RESULTS

The median interobserver agreement in terms of the numbers of lumbar spinal stenosis levels were 0.819, 0.735, and 0.729 for SR-DLR, DLR, and ZIP images, respectively. The imaging quality of the cauda equina, and image sharpness, noise, and overall quality on SR-DLR images were significantly better than those on DLR and ZIP images, as rated by all readers (p < 0.001, Wilcoxon signed-rank test). No significant differences were observed for artifacts on SR-DLR against DLR and ZIP.

CONCLUSIONS

SR-DLR improved the image quality of lumbar MR myelographs compared to DLR and ZIP, and was associated with better interobserver agreement during assessment of lumbar spinal stenosis status.

摘要

目的

探讨磁共振脊髓造影辅助评估腰椎管狭窄症的超分辨率深度学习重建(SR-DLR)。

材料与方法

在这项回顾性研究中,分析了40例患者(16例男性和24例女性;平均年龄59.4±31.8岁)的腰椎磁共振脊髓造影。利用磁共振成像数据,分别通过SR-DLR、深度学习重建(DLR)和传统零填充插值(ZIP)对磁共振脊髓造影进行重建。三名对患者背景数据和磁共振重建信息不知情的放射科医生,独立根据以下项目评估图像集:受腰椎管狭窄影响的节段数;以及马尾神经的显示、清晰度、噪声、伪影和整体图像质量。

结果

SR-DLR、DLR和ZIP图像在腰椎管狭窄节段数方面的观察者间一致性中位数分别为0.819、0.735和0.729。所有读者评定,SR-DLR图像上马尾神经的成像质量、图像清晰度、噪声和整体质量均显著优于DLR和ZIP图像(p<0.001,Wilcoxon符号秩检验)。SR-DLR图像与DLR和ZIP图像相比,在伪影方面未观察到显著差异。

结论

与DLR和ZIP相比,SR-DLR提高了腰椎磁共振脊髓造影的图像质量,并且在评估腰椎管狭窄状态时与更好的观察者间一致性相关。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验