Suppr超能文献

探讨超分辨率深度学习对磁共振血管成像图像质量的影响。

Exploring the impact of super-resolution deep learning on MR angiography image quality.

机构信息

Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto-shi, Kumamoto, 860-8556, Japan.

Department of Central Radiology, Kumamoto University Hospital, Honjo 1-1-1, Kumamoto, 860-8556, Japan.

出版信息

Neuroradiology. 2024 Feb;66(2):217-226. doi: 10.1007/s00234-023-03271-1. Epub 2023 Dec 27.

Abstract

PURPOSE

The aim of this study is to assess the effect of super-resolution deep learning-based reconstruction (SR-DLR), which uses k-space properties, on image quality of intracranial time-of-flight (TOF) magnetic resonance angiography (MRA) at 3 T.

METHODS

This retrospective study involved 35 patients who underwent intracranial TOF-MRA using a 3-T MRI system with SR-DLR based on k-space properties in October and November 2022. We reconstructed MRA with SR-DLR (matrix = 1008 × 1008) and MRA without SR-DLR (matrix = 336 × 336). We measured the signal-to-noise ratio (SNR), contrast, and contrast-to-noise ratio (CNR) in the basilar artery (BA) and the anterior cerebral artery (ACA) and the sharpness of the posterior cerebral artery (PCA) using the slope of the signal intensity profile curve at the half-peak points. Two radiologists evaluated image noise, artifacts, contrast, sharpness, and overall image quality of the two image types using a 4-point scale. We compared quantitative and qualitative scores between images with and without SR-DLR using the Wilcoxon signed-rank test.

RESULTS

The SNRs, contrasts, and CNRs were all significantly higher in images with SR-DLR than those without SR-DLR (p < 0.001). The slope was significantly greater in images with SR-DLR than those without SR-DLR (p < 0.001). The qualitative scores in MRAs with SR-DLR were all significantly higher than MRAs without SR-DLR (p < 0.001).

CONCLUSION

SR-DLR with k-space properties can offer the benefits of increased spatial resolution without the associated drawbacks of longer scan times and reduced SNR and CNR in intracranial MRA.

摘要

目的

本研究旨在评估基于 k 空间特性的超分辨率深度学习重建(SR-DLR)对 3T 颅内时间飞跃(TOF)磁共振血管造影(MRA)图像质量的影响。

方法

本回顾性研究纳入了 2022 年 10 月至 11 月在 3T MRI 系统上使用基于 k 空间特性的 SR-DLR 进行颅内 TOF-MRA 的 35 例患者。我们使用 SR-DLR(矩阵=1008×1008)和无 SR-DLR(矩阵=336×336)重建 MRA。我们测量基底动脉(BA)和大脑前动脉(ACA)的信噪比(SNR)、对比度和对比噪声比(CNR),以及在后脑动脉(PCA)的半峰点处信号强度轮廓曲线斜率的锐度。两名放射科医生使用 4 分制评估两种图像类型的图像噪声、伪影、对比度、锐度和整体图像质量。我们使用 Wilcoxon 符号秩检验比较有和无 SR-DLR 的图像的定量和定性评分。

结果

有 SR-DLR 的图像的 SNR、对比度和 CNR 均明显高于无 SR-DLR 的图像(p<0.001)。有 SR-DLR 的图像的斜率明显大于无 SR-DLR 的图像(p<0.001)。有 SR-DLR 的 MRA 的定性评分均明显高于无 SR-DLR 的 MRA(p<0.001)。

结论

基于 k 空间特性的 SR-DLR 可以提供增加空间分辨率的好处,而不会增加扫描时间、降低 SNR 和 CNR。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验