Suppr超能文献

用于蛋白质组学的开源且符合 FAIR 原则的研究软件。

Open-Source and FAIR Research Software for Proteomics.

作者信息

Perez-Riverol Yasset, Bittremieux Wout, Noble William S, Martens Lennart, Bilbao Aivett, Lazear Michael R, Grüning Bjorn, Katz Daniel S, MacCoss Michael J, Dai Chengxin, Eng Jimmy K, Bouwmeester Robbin, Shortreed Michael R, Audain Enrique, Sachsenberg Timo, Van Goey Jeroen, Wallmann Georg, Wen Bo, Käll Lukas, Fondrie William E

机构信息

European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge CB10 1SD, U.K.

Department of Computer Science, University of Antwerp, 2020 Antwerpen, Belgium.

出版信息

J Proteome Res. 2025 May 2;24(5):2222-2234. doi: 10.1021/acs.jproteome.4c01079. Epub 2025 Apr 23.

Abstract

Scientific discovery relies on innovative software as much as experimental methods, especially in proteomics, where computational tools are essential for mass spectrometer setup, data analysis, and interpretation. Since the introduction of SEQUEST, proteomics software has grown into a complex ecosystem of algorithms, predictive models, and workflows, but the field faces challenges, including the increasing complexity of mass spectrometry data, limited reproducibility due to proprietary software, and difficulties integrating with other omics disciplines. Closed-source, platform-specific tools exacerbate these issues by restricting innovation, creating inefficiencies, and imposing hidden costs on the community. Open-source software (OSS), aligned with the FAIR Principles (Findable, Accessible, Interoperable, Reusable), offers a solution by promoting transparency, reproducibility, and community-driven development, which fosters collaboration and continuous improvement. In this manuscript, we explore the role of OSS in computational proteomics, its alignment with FAIR principles, and its potential to address challenges related to licensing, distribution, and standardization. Drawing on lessons from other omics fields, we present a vision for a future where OSS and FAIR principles underpin a transparent, accessible, and innovative proteomics community.

摘要

科学发现与实验方法一样依赖于创新软件,在蛋白质组学领域尤其如此,在该领域,计算工具对于质谱仪设置、数据分析和解读至关重要。自从SEQUEST问世以来,蛋白质组学软件已发展成为一个由算法、预测模型和工作流程组成的复杂生态系统,但该领域面临诸多挑战,包括质谱数据日益复杂、专有软件导致可重复性有限,以及与其他组学学科整合困难。闭源的、特定平台的工具通过限制创新、造成效率低下以及给学界带来隐性成本,使这些问题更加严重。与FAIR原则(可查找、可访问、互操作、可重用)相一致的开源软件,通过促进透明度、可重复性和社区驱动的开发提供了一种解决方案,从而促进合作与持续改进。在本手稿中,我们探讨了开源软件在计算蛋白质组学中的作用、其与FAIR原则的一致性,以及其解决与许可、分发和标准化相关挑战的潜力。借鉴其他组学领域的经验教训,我们提出了一个未来愿景,即开源软件和FAIR原则将支撑一个透明、可访问且创新的蛋白质组学社区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ea/12053954/138e4662c707/pr4c01079_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验