John Alishba T, Qian Jing, Wang Qi, Garay-Rairan Fabian S, Bandara Y M Nuwan D Y, Lensky Artem, Murugappan Krishnan, Suominen Hanna, Tricoli Antonio
Nanotechnology Research Laboratory, Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia.
School of Computing, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2601, Australia.
ACS Appl Mater Interfaces. 2025 May 7;17(18):27408-27421. doi: 10.1021/acsami.5c02081. Epub 2025 Apr 23.
The increasing demand for gas molecule detection emphasizes the need for portable sensor devices possessing selectivity, a low limit of detection (LOD), and a large dynamic range. Despite substantial progress in developing nanostructured sensor materials with heightened sensitivity, achieving sufficient selectivity remains a challenge. Here, we introduce a strategy to enhance the performance of chemiresistive gas sensors by combining an advanced sensor design with machine learning (ML). Our sensor architecture consists of a tungsten oxide (WO) nanoparticle network, as the primary sensing layer, with an integrated zeolitic imidazolate framework (ZIF-8) membrane layer, used to induce a gas-specific delay to the diffusion of analytes, sharing conceptual similarities to gas chromatography. However, the miniaturized design and chemical activity of the ZIF-8 results in a nontrivial impact of the ZIF-8 membrane on the target analyte diffusivity and sensor response. An ML method was developed to evaluate the response dynamics with a panel of relevant analytes including acetone, ethanol, propane, and ethylbenzene. Our advanced sensor design and ML algorithm led to an excellent capability to determine the gas molecule type and its concentration, achieving accuracies of 97.22 and 86.11%, respectively, using a virtual array of 4 sensors. The proposed ML method can also reduce the necessary sensing time to only 5 s while maintaining an accuracy of 70.83%. When compared with other ML methods in the literature, our approach also gave superior performance in terms of sensitivity, specificity, precision, and 1-score. These findings show a promising approach to overcome a longstanding challenge of the highly miniaturized but poorly selective semiconductor sensor technology, with impact ranging from environmental monitoring to explosive detection and health care.
对气体分子检测的需求不断增加,凸显了对具备选择性、低检测限(LOD)和大动态范围的便携式传感器设备的需求。尽管在开发具有更高灵敏度的纳米结构传感器材料方面取得了重大进展,但实现足够的选择性仍然是一项挑战。在此,我们介绍一种通过将先进的传感器设计与机器学习(ML)相结合来提高化学电阻式气体传感器性能的策略。我们的传感器架构由作为主要传感层的氧化钨(WO)纳米颗粒网络和用于对分析物扩散产生特定气体延迟的集成沸石咪唑酯骨架(ZIF-8)膜层组成,这与气相色谱有概念上的相似之处。然而,ZIF-8的小型化设计和化学活性导致ZIF-8膜对目标分析物扩散率和传感器响应产生了显著影响。开发了一种ML方法,以评估包括丙酮、乙醇、丙烷和乙苯在内的一组相关分析物的响应动力学。我们先进的传感器设计和ML算法具有出色的能力来确定气体分子类型及其浓度,使用4个传感器的虚拟阵列分别实现了97.22%和86.11%的准确率。所提出的ML方法还可以将必要的传感时间缩短至仅5秒,同时保持70.83%的准确率。与文献中的其他ML方法相比,我们的方法在灵敏度、特异性、精度和F1分数方面也表现出卓越的性能。这些发现展示了一种有前景的方法,可克服高度小型化但选择性差的半导体传感器技术长期存在的挑战,其影响范围从环境监测到爆炸物检测和医疗保健。