Li Chao, Zhuo Chuanjun, Ma Xiaoyan, Li Ranli, Chen Ximing, Li Yachen, Zhang Qiuyu, Yang Lei, Tian Hongjun, Wang Lina
Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, China.
Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China.
Schizophrenia (Heidelb). 2025 Apr 23;11(1):69. doi: 10.1038/s41537-025-00618-w.
In 2017, the Food and Drug Administration (FDA) approved valbenazine and deutetrabenazine, two vesicular monoamine transporter 2 (VMAT2) inhibitors, as treatments for tardive dyskinesia (TD). Additionally, some trials have suggested that vitamin E may benefit TD patients. However, the mechanistic basis for these treatments remains unclear. The objective of this study was to analyze and compare the mechanisms of valbenazine, deutetrabenazine, and vitamin E in TD treatment utilizing network pharmacology and molecular docking approaches. Putative target genes associated with valbenazine, deutetrabenazine, and vitamin E were retrieved from the PharmMapper, CTD, GeneCards, SwissTargetPrediction, and DrugBank databases. TD-related targets were identified using the GeneCards, DisGeNET, OMIM, and TTD databases. A protein-protein interaction (PPI) network was created to identify core targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted via DAVID, and Cytoscape was used to build a drug-pathway-target-disease network. Molecular docking evaluated drug-target interactions. A total of 32, 36, and 62 targets relevant to the treatment of TD were identified for valbenazine, deutetrabenazine, and vitamin E, respectively. PPI and KEGG pathway analyses suggested that valbenazine and deutetrabenazine may influence TD through the dopaminergic synapse signaling pathway via common core targets (e.g., Dopamine Receptor D1 (DRD1), DRD2, Monoamine Oxidase B (MAOB), Solute Carrier Family 6 Member 3 (SLC6A3), SLC18A2) and specific targets (DRD3 for valbenazine, MAOA for deutetrabenazine). Vitamin E may affect TD by targeting the PI3K-Akt pathway through AKT Serine/Threonine Kinase 1 (AKT1), Brain-Derived Neurotrophic Factor (BDNF), Insulin (INS), Nitric Oxide Synthase 3 (NOS3), and Toll-Like Receptor 4 (TLR4). This study provides insights into the common and unique molecular mechanisms by which valbenazine, deutetrabenazine, and vitamin E may treat TD. Pharmacological experiments should be conducted to verify and further explore these results. The findings offer a theoretical basis for further pharmacological investigation and a resource for TD drug screening.
2017年,美国食品药品监督管理局(FDA)批准了两种囊泡单胺转运体2(VMAT2)抑制剂——丙戊嗪和氘代丁苯那嗪,用于治疗迟发性运动障碍(TD)。此外,一些试验表明维生素E可能对TD患者有益。然而,这些治疗方法的作用机制仍不清楚。本研究的目的是利用网络药理学和分子对接方法,分析和比较丙戊嗪、氘代丁苯那嗪和维生素E治疗TD的机制。从PharmMapper、CTD、GeneCards、SwissTargetPrediction和DrugBank数据库中检索与丙戊嗪、氘代丁苯那嗪和维生素E相关的潜在靶基因。使用GeneCards、DisGeNET、OMIM和TTD数据库鉴定TD相关靶点。创建蛋白质-蛋白质相互作用(PPI)网络以识别核心靶点。通过DAVID进行基因本体(GO)和京都基因与基因组百科全书(KEGG)通路富集分析,并使用Cytoscape构建药物-通路-靶点-疾病网络。分子对接评估药物-靶点相互作用。分别确定了与丙戊嗪、氘代丁苯那嗪和维生素E治疗TD相关的32、36和62个靶点。PPI和KEGG通路分析表明,丙戊嗪和氘代丁苯那嗪可能通过多巴胺能突触信号通路,经由共同核心靶点(如多巴胺受体D1(DRD1)、DRD2、单胺氧化酶B(MAOB)、溶质载体家族6成员3(SLC6A3)、SLC18A2)和特定靶点(丙戊嗪的DRD3、氘代丁苯那嗪的MAOA)影响TD。维生素E可能通过AKT丝氨酸/苏氨酸激酶1(AKT1)、脑源性神经营养因子(BDNF)、胰岛素(INS)、一氧化氮合酶3(NOS3)和Toll样受体4(TLR4)靶向PI3K-Akt通路来影响TD。本研究深入探讨了丙戊嗪、氘代丁苯那嗪和维生素E治疗TD的共同和独特分子机制。应进行药理实验以验证并进一步探索这些结果。这些发现为进一步的药理研究提供了理论基础,也为TD药物筛选提供了资源。