Abe Takaya, Inoue Ken-Ichi, Kiyonari Hiroshi
Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Chuou-ku, Kobe, Japan.
Dev Growth Differ. 2025 May;67(4):215-225. doi: 10.1111/dgd.70007. Epub 2025 Apr 23.
The genetic modification of rats is a key technology for advancing biomedical research on human diseases. CRISPR/Cas9-mediated genome editing enables the generation of knockout rats in a single step, without the need for embryonic stem cells, by directly injecting genome editing components into zygotes. This simplifies the process, reduces costs, and accelerates gene function analysis in rats. However, the insertion of a gene cassette into a target site has remained inefficient, limiting the generation of knockin (KI) rats. To overcome this issue, we developed an optimized method that covers the entire process from zygote harvesting with superovulation to timed microinjection, ensuring the consistent generation of KI rats. We successfully generated four different fluorescent reporter lines at the ROSA26 locus in rats. Our study provides detailed, step-by-step protocols for donor vector design, zygote collection, microinjection, founder screening, and cryopreservation in rats.
大鼠的基因改造是推进人类疾病生物医学研究的关键技术。CRISPR/Cas9介导的基因组编辑能够通过直接将基因组编辑组件注射到受精卵中,一步生成基因敲除大鼠,无需胚胎干细胞。这简化了流程,降低了成本,并加速了大鼠基因功能分析。然而,将基因盒插入靶位点的效率仍然较低,限制了基因敲入(KI)大鼠的生成。为克服这一问题,我们开发了一种优化方法,涵盖从超排卵采集受精卵到定时显微注射的全过程,确保一致地生成KI大鼠。我们成功在大鼠的ROSA26位点生成了四种不同的荧光报告基因系。我们的研究提供了大鼠供体载体设计、受精卵采集、显微注射、奠基者筛选和冷冻保存的详细分步方案。