Suppr超能文献

利用PB2片段对禽流感病毒人畜共患病潜力进行机器学习评估。

Machine learning assessment of zoonotic potential in avian influenza viruses using PB2 segment.

作者信息

Kim Sangwook, Kim Min-Ah, Kim Bitgoeul, Lee Jisu, Jung Se-Kyung, Kim Jonghong, Chung Ho-Young, Lee Chung-Young, Jeong Sungmoon

机构信息

Bio-medical Research Institute, Kyungpook National University Hospital, Daegu, South Korea.

Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea.

出版信息

BMC Genomics. 2025 Apr 23;26(1):395. doi: 10.1186/s12864-025-11589-8.

Abstract

BACKGROUND

Influenza A virus (IAV) is a major global health threat, causing seasonal epidemics and occasional pandemics. Particularly, Influenza A viruses from avian species pose significant zoonotic threats, with PB2 adaptation serving as a critical first step in cross-species transmission. A comprehensive risk assessment framework based on PB2 sequences is necessary, which should encompass detailed analyses of specific residues and mutations while maintaining sufficient generality for application to non-PB2 segments.

RESULTS

In this study, we developed two complementary approaches: a regression-based model for accurately distinguishing among risk groups, and a SHAP-based risk assessment model for more meaningful risk analyses. For the regression-based risk models, we compared various methodologies, including tree ensemble methods, conventional regression models, and deep learning architectures. The optimized regression model, combined with SHAP value analysis, identified and ranked individual residues contributing to zoonotic potential. The SHAP-based risk model enabled intra-class analyses within the zoonotic risk assessment framework and quantified risk yields from specific mutations.

CONCLUSION

Experimental analyses demonstrated that the Random Forest regression model outperformed other models in most cases, and we validated the target value settings for risk regression through ablation studies. Our SHAP-based analysis identified key residues (271A, 627K, 591R, 588A, 292I, 684S, 684A, 81M, 199S, and 368Q) and mutations (T271A, Q368R/K, E627K, Q591R, A588T/I/V, and I292V/T) critical for zoonotic risk assessment. Using the SHAP-based risk assessment model, we found that influenza A viruses from Phasianidae showed elevated zoonotic risk scores compared to those from other avian species. Additionally, mutations I292V/T, Q368R, A588T/I, V598A/I/T, and E/V627K were identified as significant mutations in the Phasianidae. These PB2-focused quantitative methods provide a robust and generalizable framework for both rapid screening of avians' zoonotic potential and analytical quantification of risks associated with specific residues or mutations.

摘要

背景

甲型流感病毒(IAV)是全球主要的健康威胁,可引发季节性流行和偶发性大流行。特别是,来自禽类的甲型流感病毒构成了重大的人畜共患病威胁,PB2适应性是跨物种传播的关键第一步。有必要建立一个基于PB2序列的综合风险评估框架,该框架应包括对特定残基和突变的详细分析,同时保持足够的通用性以应用于非PB2片段。

结果

在本研究中,我们开发了两种互补方法:一种基于回归的模型,用于准确区分风险组;另一种基于SHAP的风险评估模型,用于进行更有意义的风险分析。对于基于回归的风险模型,我们比较了各种方法,包括树集成方法、传统回归模型和深度学习架构。优化后的回归模型结合SHAP值分析,识别并排列了对人畜共患病潜力有贡献的单个残基。基于SHAP的风险模型实现了人畜共患病风险评估框架内的类内分析,并量化了特定突变的风险产生情况。

结论

实验分析表明,随机森林回归模型在大多数情况下优于其他模型,我们通过剔除研究验证了风险回归的目标值设置。我们基于SHAP的分析确定了对人畜共患病风险评估至关重要的关键残基(271A、627K、591R、588A、292I、684S、684A、81M、199S和368Q)和突变(T271A、Q368R/K、E627K、Q591R、A588T/I/V和I292V/T)。使用基于SHAP的风险评估模型,我们发现雉科的甲型流感病毒与人畜共患病风险评分高于其他禽类。此外,突变I292V/T、Q368R、A588T/I、V598A/I/T和E/V627K被确定为雉科中的显著突变。这些以PB2为重点的定量方法为快速筛选禽类的人畜共患病潜力以及分析量化与特定残基或突变相关的风险提供了一个强大且可推广的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a3e/12020041/340c8411e91a/12864_2025_11589_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验