Horiuchi Hiroto, Araki Yasufumi, Wakabayashi Yuki K, Ieda Jun'ichi, Yamanouchi Michihiko, Sato Yukio, Kaneta-Takada Shingo, Taniyasu Yoshitaka, Yamamoto Hideki, Krockenberger Yoshiharu, Tanaka Masaaki, Ohya Shinobu
Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-Gun, Ibaraki, 319-1195, Japan.
Adv Mater. 2025 Jul;37(26):e2416091. doi: 10.1002/adma.202416091. Epub 2025 Apr 24.
Spin Berry curvature characterizes the band topology as the spin counterpart of Berry curvature and is crucial in generating novel spintronics functionalities. By breaking the crystalline inversion symmetry, the spin Berry curvature is expected to be significantly enhanced; this enhancement will increase the intrinsic spin Hall effect in ferromagnetic materials and, thus, the spin-orbit torques (SOTs). However, this intriguing approach is not applied to devices; generally, the spin Hall effect in ferromagnet/heavy-metal bilayer is used for SOT magnetization switching. Here, SOT-induced partial magnetization switching is demonstrated in a single layer of a single-crystalline Weyl oxide SrRuO (SRO) with a small current density of ≈3.1 × 10 A cm. Detailed analysis of the crystal structure in the seemingly perfect periodic lattice of the SRO film reveals barely discernible oxygen octahedral rotations with angles of ≈5° near the interface with a substrate. Tight-binding calculations indicate that a large spin Hall conductivity is induced around small gaps generated at band crossings by the synergy of inherent spin‒orbit coupling and band inversion due to the rotations, causing magnetization reversal. The results indicate that a minute atomic displacement in single-crystal films can induce strong intrinsic SOTs that are useful for spin-orbitronics devices.
自旋贝里曲率作为贝里曲率的自旋对应物,表征了能带拓扑结构,对于产生新型自旋电子学功能至关重要。通过打破晶体反演对称性,预计自旋贝里曲率会显著增强;这种增强将增加铁磁材料中的本征自旋霍尔效应,进而增加自旋轨道矩(SOT)。然而,这种有趣的方法尚未应用于器件;通常,铁磁体/重金属双层中的自旋霍尔效应被用于SOT磁化翻转。在此,在具有约3.1×10 A/cm小电流密度的单晶外尔氧化物SrRuO(SRO)单层中展示了SOT诱导的部分磁化翻转。对SRO薄膜看似完美的周期性晶格中的晶体结构进行详细分析,发现在与衬底界面附近存在角度约为5°的几乎难以察觉的氧八面体旋转。紧束缚计算表明,由于旋转导致的固有自旋-轨道耦合和能带反转的协同作用,在能带交叉处产生的小能隙周围会诱导出大的自旋霍尔电导率,从而导致磁化反转。结果表明,单晶薄膜中的微小原子位移可诱导出对自旋轨道电子学器件有用的强本征SOT。