Pravdivtsev Andrey N, Tickner Ben J, Glöggler Stefan, Hövener Jan-Bernd, Buntkowsky Gerd, Duckett Simon B, Bowers Clifford R, Zhivonitko Vladimir V
Department Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany.
Centre for Hyperpolarization in Magnetic Resonance (CHyM), Department of Chemistry University of York, Heslington, YO10 5NY, United Kingdom.
ACS Catal. 2025 Apr 4;15(8):6386-6409. doi: 10.1021/acscatal.4c07870. eCollection 2025 Apr 18.
Nuclear spin hyperpolarization utilizing parahydrogen has the potential for broad applications in chemistry, catalysis, biochemistry, and medicine. This review examines recent chemical and biochemical insights gained using parahydrogen-induced polarization (PHIP). We begin with photoinduced PHIP, which allows the investigation of short-lived and photoactivated catalysis. Next, we review the partially negative line effect, in which distinctive line shape helps to reveal information about rapid exchange with parahydrogen and the role of short-lived catalytic species. The NMR signal enhancement of a single proton in oneH-PHIP is discussed, challenging the underpinning concept of the necessity of pairwise hydrogenation. Furthermore, we examine metal-free PHIP facilitated by frustrated Lewis pair molecular tweezers and radicaloids, demonstrating alternative routes to hydrogenation. Although symmetric molecules incorporating parahydrogen are NMR silent, we showcase methods that reveal hyperpolarized states through post-hydrogenation reactions. We discuss chemical exchange processes that mediate polarization transfer between parahydrogen and a molecular target, expanding the reach of PHIP without synthesizing specialized precursors. We conclude this review by highlighting the role of PHIP in uncovering the H activation mechanisms of hydrogenases. By providing a detailed review of these diverse phenomena, we aim to familiarize the reader with the versatility of PHIP and its potential applications for mechanistic studies and chemical analysis.
利用仲氢进行的核自旋超极化在化学、催化、生物化学和医学领域具有广泛的应用潜力。本综述考察了利用仲氢诱导极化(PHIP)获得的最新化学和生物化学见解。我们首先介绍光诱导PHIP,它可用于研究短寿命和光活化催化。接下来,我们回顾部分负线效应,其中独特的线形有助于揭示与仲氢快速交换的信息以及短寿命催化物种的作用。讨论了单质子在1H-PHIP中的NMR信号增强,对成对氢化必要性的基础概念提出了挑战。此外,我们考察了由受阻路易斯对分子镊子和类自由基促进的无金属PHIP,展示了氢化的替代途径。尽管包含仲氢的对称分子在NMR中无信号,但我们展示了通过氢化后反应揭示超极化状态的方法。我们讨论了介导仲氢与分子靶标之间极化转移的化学交换过程,无需合成特殊前体即可扩展PHIP的应用范围。我们通过强调PHIP在揭示氢化酶的H活化机制中的作用来结束本综述。通过对这些不同现象进行详细综述,我们旨在使读者熟悉PHIP的多功能性及其在机理研究和化学分析中的潜在应用。