Suppr超能文献

纵向轨迹建模中损耗加权调整的作用:一项模拟研究

The Role of Weighting Adjustment for Attrition in Longitudinal Trajectory Modeling: A Simulation Study.

作者信息

West Brady T, Si Yajuan, Hu Yueying, McCabe Sean E, Veliz Phil

机构信息

Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor; Department of Biostatistics, University of Michigan, Ann Arbor; Center for the Study of Drugs, Alcohol, Smoking and Health, Department of Health Behavior and Biological Sciences, School of Nursing, University of Michigan, Ann Arbor.

Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor; Department of Biostatistics, University of Michigan, Ann Arbor.

出版信息

Commun Stat Simul Comput. 2025;54(3):866-888. doi: 10.1080/03610918.2024.2362923. Epub 2024 Jun 7.

Abstract

Most longitudinal surveys construct weights and release wave-specific weights to adjust for attrition. However, there is no clear consensus in the literature on whether or how to apply weights in longitudinal trajectory modeling. We present a simulation study, motivated by a real-life longitudinal study of substance use, and consider different missing data mechanisms, weight construction processes, and specifications of substantive models of interest. Based on the results of the simulation study, we provide practical recommendations for analysts of longitudinal survey data with respect to weighting approaches that should be considered in alternative scenarios.

摘要

大多数纵向调查都会构建权重并发布特定波次的权重,以调整样本流失问题。然而,对于在纵向轨迹建模中是否应用权重以及如何应用权重,文献中尚无明确的共识。我们开展了一项模拟研究,该研究受一项关于物质使用的实际纵向研究启发,并考虑了不同的缺失数据机制、权重构建过程以及感兴趣的实质性模型的设定。基于模拟研究的结果,我们针对纵向调查数据的分析人员,就不同场景下应考虑的加权方法提供了实用建议。

相似文献

1
The Role of Weighting Adjustment for Attrition in Longitudinal Trajectory Modeling: A Simulation Study.
Commun Stat Simul Comput. 2025;54(3):866-888. doi: 10.1080/03610918.2024.2362923. Epub 2024 Jun 7.
3
Incorporating the sampling design in weighting adjustments for panel attrition.
Stat Med. 2015 Dec 10;34(28):3637-47. doi: 10.1002/sim.6618. Epub 2015 Aug 2.
5
Attrition Bias Related to Missing Outcome Data: A Longitudinal Simulation Study.
Epidemiology. 2018 Jan;29(1):87-95. doi: 10.1097/EDE.0000000000000755.
6
Methods to account for attrition in longitudinal data: do they work? A simulation study.
Eur J Epidemiol. 2005;20(8):657-62. doi: 10.1007/s10654-005-7919-7.
7
Assessment of Multiple Membership Multilevel Models: An Application to Interviewer Effects on Nonresponse.
Multivariate Behav Res. 2018 Sep-Oct;53(5):595-611. doi: 10.1080/00273171.2018.1465809. Epub 2018 May 17.
8
Analytical results in longitudinal studies depended on target of inference and assumed mechanism of attrition.
J Clin Epidemiol. 2015 Oct;68(10):1165-75. doi: 10.1016/j.jclinepi.2015.03.011. Epub 2015 Mar 31.
9
Balancing vs modeling approaches to weighting in practice.
Stat Med. 2020 Oct 30;39(24):3227-3254. doi: 10.1002/sim.8659. Epub 2020 Sep 3.
10
A wide range of missing imputation approaches in longitudinal data: a simulation study and real data analysis.
BMC Med Res Methodol. 2023 Jul 6;23(1):161. doi: 10.1186/s12874-023-01968-8.

引用本文的文献

1
Trends and Sociodemographic Differences in Tobacco/Nicotine Transitions Among U.S. Adolescents and Young Adults Using e-cigarettes, 2014-2023.
J Adolesc Health. 2025 May;76(5):920-927. doi: 10.1016/j.jadohealth.2025.01.013. Epub 2025 Feb 19.

本文引用的文献

4
Longitudinal drop-out and weighting against its bias.
BMC Med Res Methodol. 2017 Dec 8;17(1):164. doi: 10.1186/s12874-017-0446-x.
5
Selective nonresponse bias in population-based survey estimates of drug use behaviors in the United States.
Soc Psychiatry Psychiatr Epidemiol. 2016 Jan;51(1):141-53. doi: 10.1007/s00127-015-1122-2. Epub 2015 Sep 16.
6
Missing data methods in longitudinal studies: a review.
Test (Madr). 2009 May 1;18(1):1-43. doi: 10.1007/s11749-009-0138-x.
7
Heavy drinking across the transition to college: predicting first-semester heavy drinking from precollege variables.
Addict Behav. 2007 Apr;32(4):819-35. doi: 10.1016/j.addbeh.2006.06.024. Epub 2006 Jul 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验