Suppr超能文献

评估从非概率样本估计的回归系数中的选择偏差及其在遗传学和人口调查中的应用。

ASSESSING SELECTION BIAS IN REGRESSION COEFFICIENTS ESTIMATED FROM NONPROBABILITY SAMPLES WITH APPLICATIONS TO GENETICS AND DEMOGRAPHIC SURVEYS.

作者信息

West Brady T, Little Roderick J, Andridge Rebecca R, Boonstra Philip S, Ware Erin B, Pandit Anita, Alvarado-Leiton Fernanda

机构信息

Survey Research Center, Institute for Social Research, University of Michigan.

Department of Biostatistics, School of Public Health, University of Michigan.

出版信息

Ann Appl Stat. 2021 Sep;15(3):1556-1581. doi: 10.1214/21-aoas1453. Epub 2021 Sep 23.

Abstract

Selection bias is a serious potential problem for inference about relationships of scientific interest based on samples without well-defined probability sampling mechanisms. Motivated by the potential for selection bias in: (a) estimated relationships of polygenic scores (PGSs) with phenotypes in genetic studies of volunteers and (b) estimated differences in subgroup means in surveys of smartphone users, we derive novel measures of selection bias for estimates of the coefficients in linear and probit regression models fitted to nonprobability samples, when aggregate-level auxiliary data are available for the selected sample and the target population. The measures arise from normal pattern-mixture models that allow analysts to examine the sensitivity of their inferences to assumptions about nonignorable selection in these samples. We examine the effectiveness of the proposed measures in a simulation study and then use them to quantify the selection bias in: (a) estimated PGS-phenotype relationships in a large study of volunteers recruited via Facebook and (b) estimated subgroup differences in mean past-year employment duration in a nonprobability sample of low-educated smartphone users. We evaluate the performance of the measures in these applications using benchmark estimates from large probability samples.

摘要

对于基于没有明确概率抽样机制的样本推断科学研究感兴趣的关系而言,选择偏倚是一个严重的潜在问题。鉴于在以下两方面存在选择偏倚的可能性:(a)在志愿者基因研究中多基因分数(PGS)与表型的估计关系;(b)在智能手机用户调查中估计的亚组均值差异,我们推导出了适用于拟合非概率样本的线性和概率回归模型系数估计的新型选择偏倚度量方法,前提是所选样本和目标人群可获取总体水平的辅助数据。这些度量方法源自正态模式混合模型,使分析人员能够检验其推断对这些样本中不可忽略选择假设的敏感性。我们在模拟研究中检验了所提度量方法的有效性,然后用它们来量化以下两方面的选择偏倚:(a)在一项通过脸书招募志愿者的大型研究中估计的PGS-表型关系;(b)在低学历智能手机用户非概率样本中估计的过去一年平均就业时长的亚组差异。我们使用来自大概率样本的基准估计来评估这些应用中度量方法的性能。

相似文献

3
Measures of the Degree of Departure from Ignorable Sample Selection.偏离可忽略样本选择程度的度量
J Surv Stat Methodol. 2020 Nov;8(5):932-964. doi: 10.1093/jssam/smz023. Epub 2019 Aug 29.
10
We need to talk about nonprobability samples.我们需要谈谈非概率样本。
Trends Ecol Evol. 2023 Jun;38(6):521-531. doi: 10.1016/j.tree.2023.01.001. Epub 2023 Feb 10.

本文引用的文献

1
A simulation study of diagnostics for selection bias.选择偏倚诊断的模拟研究
J Off Stat. 2021 Sep;37(3):751-769. doi: 10.2478/jos-2021-0033. Epub 2021 Sep 12.
2
Measures of the Degree of Departure from Ignorable Sample Selection.偏离可忽略样本选择程度的度量
J Surv Stat Methodol. 2020 Nov;8(5):932-964. doi: 10.1093/jssam/smz023. Epub 2019 Aug 29.
8
Genomewide association studies of suicide attempts in US soldiers.美国士兵自杀未遂的全基因组关联研究。
Am J Med Genet B Neuropsychiatr Genet. 2017 Dec;174(8):786-797. doi: 10.1002/ajmg.b.32594. Epub 2017 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验