Suppr超能文献

旅游神经xLSTM:用于乡村旅游规划与创新的受神经启发的xLSTM

TourismNeuro xLSTM: neuro-inspired xLSTM for rural tourism planning and innovation.

作者信息

Jiang Jing, Li You

机构信息

Department of Tourism Management, Sichuan Polytechnic University, Deyang, Sichuan, China.

Department of Civil Engineering, Southwest Jiaotong University, Deyang, Sichuan, China.

出版信息

Front Comput Neurosci. 2025 Apr 8;19:1495313. doi: 10.3389/fncom.2025.1495313. eCollection 2025.

Abstract

INTRODUCTION

Tourism planning, particularly in rural areas, presents complex challenges due to the highly dynamic and interdependent nature of tourism demand, influenced by seasonal, geographical, and economic factors. Traditional tourism forecasting methods, such as ARIMA and Prophet, often rely on statistical models that are limited in their ability to capture long-term dependencies and multi-dimensional data interactions. These methods struggle with sparse and irregular data commonly found in rural tourism datasets, leading to less accurate predictions and suboptimal decision-making.

METHODS

To address these issues, we propose NeuroTourism xLSTM, a neuro-inspired model designed to handle the unique complexities of rural tourism planning. Our model integrates an extended Long Short-Term Memory (xLSTM) framework with spatial and temporal attention mechanisms and a memory module, enabling it to capture both short-term fluctuations and long-term trends in tourism data. Additionally, the model employs a multi-objective optimization framework to balance competing goals such as revenue maximization, environmental sustainability, and socio-economic development.

RESULTS

Experimental results on four diverse datasets, including ETT, M4, Weather2K, and the Tourism Forecasting Competition datasets, demonstrate that NeuroTourism xLSTM significantly outperforms traditional methods in terms of accuracy.

DISCUSSION

The model's ability to process complex data dependencies and deliver precise predictions makes it a valuable tool for rural tourism planners, offering actionable insights that can enhance strategic decision-making and resource allocation.

摘要

引言

由于旅游需求具有高度动态性和相互依存性,且受季节、地理和经济因素影响,旅游规划,尤其是农村地区的旅游规划面临着复杂的挑战。传统的旅游预测方法,如自回归积分移动平均模型(ARIMA)和先知模型(Prophet),通常依赖于统计模型,这些模型在捕捉长期依赖性和多维度数据交互方面能力有限。这些方法难以处理农村旅游数据集中常见的稀疏和不规则数据,导致预测不够准确,决策也不够优化。

方法

为了解决这些问题,我们提出了神经旅游长短期记忆扩展模型(NeuroTourism xLSTM),这是一种受神经启发的模型,旨在处理农村旅游规划的独特复杂性。我们的模型将扩展的长短期记忆(xLSTM)框架与时空注意力机制和记忆模块相结合,使其能够捕捉旅游数据中的短期波动和长期趋势。此外,该模型采用多目标优化框架来平衡相互竞争的目标,如收益最大化、环境可持续性和社会经济发展。

结果

在包括ETT、M4、Weather2K和旅游预测竞赛数据集在内的四个不同数据集上的实验结果表明,神经旅游长短期记忆扩展模型(NeuroTourism xLSTM)在准确性方面显著优于传统方法。

讨论

该模型处理复杂数据依赖性并提供精确预测的能力使其成为农村旅游规划者的宝贵工具,提供了可操作的见解,可增强战略决策和资源分配。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2091/12016220/1220c23f6753/fncom-19-1495313-g0001.jpg

相似文献

1
TourismNeuro xLSTM: neuro-inspired xLSTM for rural tourism planning and innovation.
Front Comput Neurosci. 2025 Apr 8;19:1495313. doi: 10.3389/fncom.2025.1495313. eCollection 2025.
2
Valley-Forecast: Forecasting Coccidioidomycosis incidence via enhanced LSTM models trained on comprehensive meteorological data.
J Biomed Inform. 2025 Feb;162:104774. doi: 10.1016/j.jbi.2025.104774. Epub 2025 Jan 17.
3
Vision Mamba and xLSTM-UNet for medical image segmentation.
Sci Rep. 2025 Mar 10;15(1):8163. doi: 10.1038/s41598-025-88967-5.
5
Multi-objective optimization technique: A novel approach in tourism sustainability planning.
J Environ Manage. 2021 May 1;285:112016. doi: 10.1016/j.jenvman.2021.112016. Epub 2021 Feb 6.
6
Application of the artificial intelligence system based on graphics and vision in ethnic tourism of subtropical grasslands.
Heliyon. 2024 May 17;10(11):e31442. doi: 10.1016/j.heliyon.2024.e31442. eCollection 2024 Jun 15.
8
MMAgentRec, a personalized multi-modal recommendation agent with large language model.
Sci Rep. 2025 Apr 8;15(1):12062. doi: 10.1038/s41598-025-96458-w.

本文引用的文献

1
Recurrent neural network for trajectory tracking control of manipulator with unknown mass matrix.
Front Neurorobot. 2024 Aug 19;18:1451924. doi: 10.3389/fnbot.2024.1451924. eCollection 2024.
3
Machine unlearning in brain-inspired neural network paradigms.
Front Neurorobot. 2024 May 21;18:1361577. doi: 10.3389/fnbot.2024.1361577. eCollection 2024.
4
Brain-inspired semantic data augmentation for multi-style images.
Front Neurorobot. 2024 Mar 26;18:1382406. doi: 10.3389/fnbot.2024.1382406. eCollection 2024.
5
Education robot object detection with a brain-inspired approach integrating Faster R-CNN, YOLOv3, and semi-supervised learning.
Front Neurorobot. 2024 Jan 4;17:1338104. doi: 10.3389/fnbot.2023.1338104. eCollection 2023.
6
Long short-term memory.
Neural Comput. 1997 Nov 15;9(8):1735-80. doi: 10.1162/neco.1997.9.8.1735.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验