Xiao XueFei, Li ChunHua, Wang XingJie, Zeng AnPing
School of Computer Science and Technology, Yibin University, Yibin, 644000, China.
Sci Rep. 2025 Jan 2;15(1):382. doi: 10.1038/s41598-024-84581-z.
Personalized tourism has recently become an increasingly popular mode of travel. Effective personalized route recommendations must consider numerous complex factors, including the vast historical trajectory of tourism, individual traveler preferences, and real-time environmental conditions. However, the large temporal and spatial spans of trajectory data pose significant challenges to achieving high relevance and accuracy in personalized route recommendation systems. This study addresses these challenges by proposing a personalized tourism route recommendation model, the Temporal Multilayer Sequential Neural Network (TMS-Net). The fixed-length trajectory segmentation method designed in TMS-Net can adaptively adjust the segmentation length of tourist trajectories, effectively addressing the issue of large spatiotemporal spans by integrating tourist behavior characteristics and route complexity. The self-attention mechanism incorporating relative positional information enhances the model's ability to capture the relationships between different paths within a tourism route by merging position encoding and distance information. Additionally, the multilayer Long Short-Term Memory neural network module, built through hierarchical time series modeling, deeply captures the complex temporal dependencies in travel routes, improving the relevance of the recommendation results and the ability to recognize long-duration travel behaviors. The TMS-Net model was trained on over six million trajectory data points from Chengdu City, Sichuan Province, spanning January 2016 to December 2022. The experimental results indicated that the optimal trajectory segmentation interval ranged from 0.8 to 1.2 h. The model achieved a recommendation accuracy of 88.6% and a Haversine distance error of 1.23, demonstrating its ability to accurately identify tourist points of interest and provide highly relevant recommendations. This study demonstrates the potential of TMS-Net to improve personalized tourism experiences significantly and offers new methodological insights for personalized travel recommendations.
个性化旅游最近已成为一种越来越受欢迎的旅行方式。有效的个性化路线推荐必须考虑众多复杂因素,包括旅游业悠久的历史轨迹、旅行者的个人偏好以及实时环境状况。然而,轨迹数据在时间和空间上的大跨度,给在个性化路线推荐系统中实现高相关性和准确性带来了重大挑战。本研究通过提出一种个性化旅游路线推荐模型——时间多层序列神经网络(TMS-Net)来应对这些挑战。TMS-Net中设计的固定长度轨迹分割方法可以自适应调整游客轨迹的分割长度,通过整合游客行为特征和路线复杂性,有效解决时空跨度大的问题。结合相对位置信息的自注意力机制通过合并位置编码和距离信息,增强了模型捕捉旅游路线中不同路径之间关系的能力。此外,通过分层时间序列建模构建的多层长短期记忆神经网络模块,深入捕捉旅行路线中复杂的时间依赖性,提高了推荐结果的相关性以及识别长时间旅行行为的能力。TMS-Net模型使用了四川省成都市2016年1月至2022年12月期间超过600万个轨迹数据点进行训练。实验结果表明,最佳轨迹分割间隔为0.8至1.2小时。该模型的推荐准确率达到88.6%,哈弗辛距离误差为1.23,证明了其准确识别旅游景点并提供高度相关推荐的能力。本研究证明了TMS-Net在显著改善个性化旅游体验方面的潜力,并为个性化旅行推荐提供了新的方法学见解。