Suppr超能文献

基于图形与视觉的人工智能系统在亚热带草原民族旅游中的应用。

Application of the artificial intelligence system based on graphics and vision in ethnic tourism of subtropical grasslands.

作者信息

Yu Hong

机构信息

Academy of fine arts, Inner Mongolia Minzu University, Tongliao Inner Mongolia, 028000, China.

出版信息

Heliyon. 2024 May 17;10(11):e31442. doi: 10.1016/j.heliyon.2024.e31442. eCollection 2024 Jun 15.

Abstract

This study aims to optimize the evaluation and decision-making of ethnic tourism resources through the utilization of deep learning algorithms and Internet of Things (IoT) technology. Specifically, emphasis is placed on the recognition and feature extraction of Mongolian decorative patterns, providing new insights for the deep application of cultural heritage and visual design. In this study, the existing DL algorithm is improved, integrating the feature extraction algorithm of ResNet + Canny + Local Binary Pattern (LBP), and utilizing an intelligent decision method to analyze the intelligent development of indigenous tourism resources. Simultaneously, the DL algorithm and IoT technology are combined with visual design and convolutional neural networks to perform feature extraction and technology recognition. Visual design offers an intuitive representation of tourism resources, while fuzzy decision-making provides a more accurate evaluation in the face of uncertainty. By implementing an intelligent decision-making system, this study achieves a multiplier effect. The integration of intelligent methods not only enhances the accuracy of tourism resource evaluation and decision-making but also elevates the quality and efficiency of the tourism experience. This multiplier effect is evident in the system's capacity to manage substantial datasets and deliver prompt, precise decision support, thus playing a pivotal role in tourism resource management and planning. The findings of this study demonstrate that optimizing intelligent development technology for rural tourism through IoT can enhance the efficacy of intelligent solutions. In terms of pattern recognition accuracy, AlexNet, VGGNet, and ResNet achieve accuracies of 90.8 %, 94.5 %, and 96.9 %, respectively, while the proposed fusion algorithm attains an accuracy of 98.8 %. These results offer practical insights for rural tourism brand strategy and underscore the utility of applying fuzzy decision systems in urban tourism and visual design. Moreover, the research outcomes hold significant practical implications for the advancement of Mongolian cultural tourism and provide valuable lessons for exploring novel paradigms in image analysis and pattern recognition. This study contributes beneficial insights for future research endeavors in related domains.

摘要

本研究旨在通过利用深度学习算法和物联网(IoT)技术,优化民族旅游资源的评估与决策。具体而言,重点在于蒙古族装饰图案的识别与特征提取,为文化遗产的深度应用和视觉设计提供新的见解。在本研究中,对现有的深度学习算法进行了改进,集成了ResNet + Canny + 局部二值模式(LBP)的特征提取算法,并利用智能决策方法分析本土旅游资源的智能发展。同时,将深度学习算法和物联网技术与视觉设计和卷积神经网络相结合,进行特征提取和技术识别。视觉设计为旅游资源提供了直观的呈现,而模糊决策在面对不确定性时提供了更准确的评估。通过实施智能决策系统,本研究实现了倍增效应。智能方法的整合不仅提高了旅游资源评估与决策的准确性,还提升了旅游体验的质量和效率。这种倍增效应在系统管理大量数据集并提供及时、精确决策支持的能力中显而易见,从而在旅游资源管理和规划中发挥关键作用。本研究结果表明,通过物联网优化乡村旅游的智能开发技术可以提高智能解决方案的效能。在模式识别准确率方面,AlexNet、VGGNet和ResNet分别达到了90.8%、94.5%和96.9%的准确率,而所提出的融合算法达到了98.8%的准确率。这些结果为乡村旅游品牌战略提供了实际见解,并强调了在城市旅游和视觉设计中应用模糊决策系统的实用性。此外,研究成果对蒙古族文化旅游的发展具有重要的实际意义,并为探索图像分析和模式识别的新范式提供了宝贵的经验教训。本研究为相关领域未来的研究工作提供了有益的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验