Suppr超能文献

疼痛医学中人工智能的路线图:现状、机遇与要求。

A roadmap for artificial intelligence in pain medicine: current status, opportunities, and requirements.

作者信息

Adams Meredith C B, Bowness James S, Nelson Ariana M, Hurley Robert W, Narouze Samer

机构信息

Departments of Anesthesiology, Translational Neuroscience, and Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.

Pain Outcomes Lab, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.

出版信息

Curr Opin Anaesthesiol. 2025 Apr 24. doi: 10.1097/ACO.0000000000001508.

Abstract

PURPOSE OF REVIEW

Artificial intelligence (AI) represents a transformative opportunity for pain medicine, offering potential solutions to longstanding challenges in pain assessment and management. This review synthesizes the current state of AI applications with a strategic framework for implementation, highlighting established adaptation pathways from adjacent medical fields.

RECENT FINDINGS

In acute pain, AI systems have achieved regulatory approval for ultrasound guidance in regional anesthesia and shown promise in automated pain scoring through facial expression analysis. For chronic pain management, machine learning algorithms have improved diagnostic accuracy for musculoskeletal conditions and enhanced treatment selection through predictive modeling. Successful integration requires interdisciplinary collaboration and physician coleadership throughout the development process, with specific adaptations needed for pain-specific challenges.

SUMMARY

This roadmap outlines a comprehensive methodological framework for AI in pain medicine, emphasizing four key phases: problem definition, algorithm development, validation, and implementation. Critical areas for future development include perioperative pain trajectory prediction, real-time procedural guidance, and personalized treatment optimization. Success ultimately depends on maintaining strong partnerships between clinicians, developers, and researchers while addressing ethical, regulatory, and educational considerations.

摘要

综述目的

人工智能(AI)为疼痛医学带来了变革性机遇,有望解决疼痛评估和管理中长期存在的挑战。本综述综合了人工智能应用的现状以及实施的战略框架,突出了从相邻医学领域借鉴的既定适应途径。

最新发现

在急性疼痛方面,人工智能系统已获得区域麻醉超声引导的监管批准,并在通过面部表情分析进行自动疼痛评分方面展现出前景。对于慢性疼痛管理,机器学习算法提高了肌肉骨骼疾病的诊断准确性,并通过预测建模优化了治疗选择。成功整合需要跨学科合作以及医生在整个开发过程中的共同领导,同时针对疼痛特有的挑战进行特定调整。

总结

本路线图概述了人工智能在疼痛医学中的全面方法框架,强调四个关键阶段:问题定义、算法开发、验证和实施。未来发展的关键领域包括围手术期疼痛轨迹预测、实时操作指导和个性化治疗优化。成功最终取决于临床医生、开发者和研究人员之间保持紧密合作,同时解决伦理、监管和教育方面的问题。

相似文献

1
A roadmap for artificial intelligence in pain medicine: current status, opportunities, and requirements.
Curr Opin Anaesthesiol. 2025 Apr 24. doi: 10.1097/ACO.0000000000001508.
2
Towards artificial intelligence application in pain medicine.
Recenti Prog Med. 2025 Mar;116(3):156-161. doi: 10.1701/4460.44555.
3
Enhancing education for children with ASD: a review of evaluation and measurement in AI tool implementation.
Disabil Rehabil Assist Technol. 2025 Mar 13:1-18. doi: 10.1080/17483107.2025.2477678.
5
AI in Medical Questionnaires: Innovations, Diagnosis, and Implications.
J Med Internet Res. 2025 Jun 23;27:e72398. doi: 10.2196/72398.
7
Advancements in AI for Computational Biology and Bioinformatics: A Comprehensive Review.
Methods Mol Biol. 2025;2952:87-105. doi: 10.1007/978-1-0716-4690-8_6.
9
Advances in artificial intelligence for diabetes prediction: insights from a systematic literature review.
Artif Intell Med. 2025 Jun;164:103132. doi: 10.1016/j.artmed.2025.103132. Epub 2025 Apr 15.
10
Moving towards the use of artificial intelligence in pain management.
Eur J Pain. 2025 Mar;29(3):e4748. doi: 10.1002/ejp.4748. Epub 2024 Nov 10.

本文引用的文献

3
Stress management with HRV following AI, semantic ontology, genetic algorithm and tree explainer.
Sci Rep. 2025 Feb 17;15(1):5755. doi: 10.1038/s41598-025-87510-w.
4
Artificial intelligence in healthcare: medical technology or technology medical?
Anaesthesia. 2025 Jun;80(6):612-616. doi: 10.1111/anae.16565. Epub 2025 Feb 16.
7
Application of artificial intelligence in the health management of chronic disease: bibliometric analysis.
Front Med (Lausanne). 2025 Jan 7;11:1506641. doi: 10.3389/fmed.2024.1506641. eCollection 2024.
8
Building community through data: the value of a researcher driven open science ecosystem.
Pain Med. 2025 Jun 1;26(6):295-298. doi: 10.1093/pm/pnaf003.
9
Towards secure and trusted AI in healthcare: A systematic review of emerging innovations and ethical challenges.
Int J Med Inform. 2025 Mar;195:105780. doi: 10.1016/j.ijmedinf.2024.105780. Epub 2024 Dec 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验