Suppr超能文献

用于计算生物学和生物信息学的人工智能进展:全面综述。

Advancements in AI for Computational Biology and Bioinformatics: A Comprehensive Review.

作者信息

Nalina Viswanathan, Prabhu Dhamodharan, Sahayarayan Jesudass Joseph, Vidhyavathi Ramasamy

机构信息

Department of Bioinformatics, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India.

Centre for Bioinformatics, Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India.

出版信息

Methods Mol Biol. 2025;2952:87-105. doi: 10.1007/978-1-0716-4690-8_6.

Abstract

The field of computational biology and bioinformatics has seen remarkable progress in recent years, driven largely by advancements in artificial intelligence (AI) technologies. This review synthesizes the latest developments in AI methodologies and their applications in addressing key challenges within the field of computational biology and bioinformatics. This review begins by outlining fundamental concepts in AI relevant to computational biology, including machine learning algorithms such as neural networks, support vector machines, and decision trees. It then explores how these algorithms have been adapted and optimized for specific tasks in bioinformatics, such as sequence analysis, protein structure prediction, and drug discovery. AI techniques can be integrated with big data analytics, cloud computing, and high-performance computing to handle the vast amounts of biological data generated by modern experimental techniques. The chapter discusses the role of AI in processing and interpreting various types of biological data, including genomic sequences, protein-protein interactions, and gene expression profiles. This chapter highlights recent breakthroughs in AI-driven precision medicine, personalized genomics, and systems biology, showcasing how AI algorithms are revolutionizing our understanding of complex biological systems and driving innovations in healthcare and biotechnology. Additionally, it addresses emerging challenges and future directions in the field, such as the ethical implications of AI in healthcare, the need for robust validation and reproducibility of AI models, and the importance of interdisciplinary collaboration between computer scientists, biologists, and clinicians. In conclusion, this comprehensive review provides insights into the transformative potential of AI in computational biology and bioinformatics, offering a roadmap for future research and development in this rapidly evolving field.

摘要

近年来,计算生物学和生物信息学领域取得了显著进展,这在很大程度上得益于人工智能(AI)技术的进步。本综述综合了人工智能方法的最新发展及其在应对计算生物学和生物信息学领域关键挑战中的应用。本综述首先概述了与计算生物学相关的人工智能基本概念,包括神经网络、支持向量机和决策树等机器学习算法。然后探讨了这些算法如何针对生物信息学中的特定任务进行调整和优化,如序列分析、蛋白质结构预测和药物发现。人工智能技术可以与大数据分析、云计算和高性能计算相结合,以处理现代实验技术产生的大量生物数据。本章讨论了人工智能在处理和解释各种类型生物数据中的作用,包括基因组序列、蛋白质-蛋白质相互作用和基因表达谱。本章重点介绍了人工智能驱动的精准医学、个性化基因组学和系统生物学方面的最新突破,展示了人工智能算法如何彻底改变我们对复杂生物系统的理解,并推动医疗保健和生物技术领域的创新。此外,它还探讨了该领域新出现的挑战和未来方向,如人工智能在医疗保健中的伦理影响、对人工智能模型进行有力验证和可重复性的必要性,以及计算机科学家、生物学家和临床医生之间跨学科合作的重要性。总之,这篇全面的综述深入探讨了人工智能在计算生物学和生物信息学中的变革潜力,为这个快速发展的领域提供了未来研发的路线图。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验