肥厚型心肌病中的人工智能:个性化风险预测与管理的进展、挑战及未来方向

Artificial Intelligence in Hypertrophic Cardiomyopathy: Advances, Challenges, and Future Directions for Personalized Risk Prediction and Management.

作者信息

Mohyeldin Moiud, Mohamed Feras O, Molina Marcos, Towfig Muhanned Faisal, Mustafa Ahmed M G, Elhussein Ahmed H, Alamin Faris, Khaja Misbahuddin, Jadhav Preeti

机构信息

Internal Medicine, BronxCare Health System, Bronx, USA.

Physiology, University of Medical Sciences and Technology (UMST), Khartoum, SDN.

出版信息

Cureus. 2025 Jul 14;17(7):e87907. doi: 10.7759/cureus.87907. eCollection 2025 Jul.

Abstract

Hypertrophic cardiomyopathy (HCM) is a complex genetic cardiovascular disease, with current risk stratification strategies showing limited accuracy in predicting sudden cardiac death and clinical outcomes. This review examines how artificial intelligence (AI) is transforming personalized risk prediction and management in HCM, with particular focus on validated clinical applications. We conducted a comprehensive literature search across PubMed, IEEE Xplore, Web of Science, and Scopus databases from January 2015 to January 2025. Search terms included "artificial intelligence", "machine learning", "deep learning", "hypertrophic cardiomyopathy", and "risk prediction". Inclusion criteria comprised peer-reviewed studies reporting AI applications in HCM with validated performance metrics. We excluded case reports, editorials, and studies without clinical validation. Of 487 identified articles, 84 met inclusion criteria and were analyzed for AI techniques, clinical applications, performance metrics, and implementation challenges. Machine learning algorithms have achieved significant breakthroughs in HCM care. Random forest models identifying ventricular arrhythmias demonstrated 83% accuracy (area under the curve (AUC): 0.83), discovering 12 novel predictors, including left atrial volume index. Deep learning ECG analysis using convolutional neural networks achieved 85-87% accuracy in sudden cardiac death prediction, substantially outperforming traditional risk scores (AUC: 0.87 vs. 0.62). AI-enhanced genetic testing has shown 96% accuracy in reclassifying variants of uncertain significance, while automated cardiac MRI analysis provides objective disease progression monitoring with reduced inter-observer variability. Real-time applications include automated ECG screening tools currently in pilot programs at major cardiac centers, and decision support systems for therapy selection showing >90% accuracy in predicting response to cardiac resynchronization therapy. Multi-center collaborations such as the SHaRe Registry are developing standardized AI models across institutions. Implementation faces specific barriers, including data bias from underrepresented populations, lack of standardized electronic health record formats across centers, regulatory approval pathways for AI-based clinical tools, and "black box" interpretability issues requiring explainable AI solutions. Integration requires addressing these challenges through prospective validation studies, development of regulatory frameworks, and clinician training programs. AI demonstrates transformative potential in HCM management, but realizing clinical benefits requires addressing technical, ethical, and implementation challenges through coordinated multidisciplinary efforts.

摘要

肥厚型心肌病(HCM)是一种复杂的遗传性心血管疾病,目前的风险分层策略在预测心源性猝死和临床结局方面准确性有限。本综述探讨了人工智能(AI)如何改变HCM的个性化风险预测和管理,特别关注经过验证的临床应用。我们对2015年1月至2025年1月期间的PubMed、IEEE Xplore、科学网和Scopus数据库进行了全面的文献检索。检索词包括“人工智能”、“机器学习”、“深度学习”、“肥厚型心肌病”和“风险预测”。纳入标准包括报告了在HCM中应用AI且具有经过验证的性能指标的同行评审研究。我们排除了病例报告、社论以及未经临床验证的研究。在487篇已识别的文章中,84篇符合纳入标准,并对其AI技术、临床应用、性能指标和实施挑战进行了分析。机器学习算法在HCM护理方面取得了重大突破。识别室性心律失常的随机森林模型准确率达83%(曲线下面积(AUC):0.83),发现了12个新的预测因子,包括左心房容积指数。使用卷积神经网络的深度学习心电图分析在心源性猝死预测中的准确率达到85 - 87%,显著优于传统风险评分(AUC:0.87对0.62)。AI增强的基因检测在重新分类意义不明确的变异方面准确率达96%,而自动心脏磁共振成像分析可提供客观的疾病进展监测,且观察者间变异性降低。实时应用包括目前在主要心脏中心试点项目中的自动心电图筛查工具,以及用于治疗选择的决策支持系统,在预测心脏再同步治疗反应方面准确率超过90%。诸如SHaRe注册库这样的多中心合作正在跨机构开发标准化的AI模型。实施面临特定障碍,包括来自代表性不足人群的数据偏差、各中心缺乏标准化的电子健康记录格式、基于AI的临床工具的监管审批途径,以及需要可解释AI解决方案的“黑箱”可解释性问题。整合需要通过前瞻性验证研究、监管框架的制定和临床医生培训项目来应对这些挑战。AI在HCM管理中展现出变革潜力,但要实现临床益处需要通过协调的多学科努力来应对技术、伦理和实施方面的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47af/12348218/4e1f6508d160/cureus-0017-00000087907-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索