Gong Zhichao, Kang Guangbo, Cao Yu, Pan Jiachen, Rong Xuejiao, Du Xiaobing, Zhang Danping, Huang He, Meng Shuxian
School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin, 300350, P. R. China.
College of Chemical Engineering, Zhejiang Province Key Laboratory of Biofuel, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
Adv Sci (Weinh). 2025 Apr 24:e2501468. doi: 10.1002/advs.202501468.
The precise control of optical properties in molecular systems remains a challenge for phototherapy. Herein, the strategic combination of aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE) molecule creates ACQ@AIE bimolecular systems with tunable optical properties, which are almost unattainable by single-component materials. Through systematic investigation of three ACQ@AIE bimolecular systems, it is established that molecule structure size differentials dictate their intermolecular interactions and consequent optical behaviors. Crucially, AIE molecule with a smaller structure size promotes ACQ molecule clustering to enhance the photothermal effect, while when the size becomes larger, particularly approaching that of ACQ molecule, facilitating π-π stacking and boosting the photodynamic effect. These distinct assembly modes revealed through combined experimental and theoretical analyses, enable precise regulation of photothermal versus photodynamic effects by simply regulating the structure size and ratio of ACQ and AIE molecules. Building on these mechanistic insights, the optimal molecule combination of ACQ@AIE bimolecular system is engineered into nanoparticles that exhibit mild photothermal effect, strong photodynamic effect, and excellent tumor accumulation and retention, achieving near-complete tumor eradication with minimal treatment cycles while maintaining good biosafety. This work not only elucidates the fundamental structure size-interaction-property relationships in ACQ@AIE bimolecular systems but also provides generalizable strategies for developing intelligent photo theranostic materials through controlled intermolecular interaction.
在分子系统中精确控制光学性质仍然是光疗面临的一项挑战。在此,聚集猝灭(ACQ)分子与聚集诱导发光(AIE)分子的策略性组合创造出了具有可调光学性质的ACQ@AIE双分子体系,这几乎是单一组分材料无法实现的。通过对三个ACQ@AIE双分子体系的系统研究,确定了分子结构尺寸差异决定其分子间相互作用及相应的光学行为。至关重要的是,结构尺寸较小的AIE分子促进ACQ分子聚集以增强光热效应,而当尺寸变大,特别是接近ACQ分子的尺寸时,则有利于π-π堆积并增强光动力效应。通过结合实验和理论分析揭示的这些不同组装模式,能够通过简单调节ACQ和AIE分子的结构尺寸及比例来精确调控光热效应与光动力效应。基于这些机理见解,将ACQ@AIE双分子体系的最佳分子组合设计成纳米颗粒,其表现出温和的光热效应、强烈的光动力效应以及优异的肿瘤蓄积和滞留能力,在最少的治疗周期内实现了近乎完全的肿瘤根除,同时保持了良好的生物安全性。这项工作不仅阐明了ACQ@AIE双分子体系中基本的结构尺寸-相互作用-性质关系,还为通过可控分子间相互作用开发智能光诊疗材料提供了可推广的策略。