Uti Daniel Ejim, Atangwho Item Justin, Alum Esther Ugo, Ntaobeten Emmanuella, Obeten Uket Nta, Bawa Inalegwu, Agada Samuel A, Ukam Catherine Ironya-Ogar, Egbung Godwin Eneji
Department of Biochemistry, Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda.
Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria.
Discov Nano. 2025 Apr 24;20(1):70. doi: 10.1186/s11671-025-04248-0.
BACKGROUND: Cancer treatments often exploit oxidative stress to selectively kill tumour cells by disrupting their lipid peroxidation membranes and inhibiting antioxidant enzymes. However, lipid peroxidation plays a dual role in cancer progression, acting as both a tumour promoter and a suppressor. Balancing oxidative stress through antioxidant therapy remains a challenge, as excessive antioxidant activity may compromise the efficacy of chemotherapy and radiotherapy. AIM: This review explores the role of antioxidants in mitigating lipid peroxidation in cancer therapy while maintaining treatment efficacy. It highlights recent advancements in nanotechnology-based targeted antioxidant delivery to optimize therapeutic outcomes. METHODS: A comprehensive literature review was conducted using reputable databases, including PubMed, Scopus, Web of Science, and ScienceDirect. The search focused on publications from the past five years (2020-2025), supplemented by relevant studies from earlier years. Keywords such as "antioxidants," "lipid peroxidation," "nanotechnology in cancer therapy," and "oxidative stress" were utilized. Relevant articles were critically analysed, and graphical illustrations were created. RESULTS: Emerging evidence suggests that nanoparticles, including liposomes, polymeric nanoparticles, metal-organic frameworks, and others, can effectively encapsulate and control the release of antioxidants in tumour cells while minimizing systemic toxicity. Stimuli-responsive carriers with tumour-specific targeting mechanisms further enhance antioxidant delivery. Studies indicate that these strategies help preserve normal cells, mitigate oxidative stress-related damage, and improve treatment efficacy. However, challenges such as bioavailability, stability, and potential interactions with standard therapies remain. CONCLUSION: Integrating nanotechnology with antioxidant-based interventions presents a promising approach for optimizing cancer therapy. Future research should focus on refining lipid peroxidation modulation strategies, assessing oxidative stress profiles during treatment, and employing biomarkers to determine optimal antioxidant dosing. A balanced approach to antioxidant use may enhance therapeutic efficacy while minimizing adverse effects.
背景:癌症治疗常常利用氧化应激通过破坏肿瘤细胞的脂质过氧化膜并抑制抗氧化酶来选择性地杀死肿瘤细胞。然而,脂质过氧化在癌症进展中发挥着双重作用,既是肿瘤促进剂又是抑制剂。通过抗氧化疗法平衡氧化应激仍然是一项挑战,因为过度的抗氧化活性可能会损害化疗和放疗的疗效。 目的:本综述探讨抗氧化剂在减轻癌症治疗中脂质过氧化同时维持治疗效果方面的作用。它强调了基于纳米技术的靶向抗氧化剂递送以优化治疗结果的最新进展。 方法:使用包括PubMed、Scopus、Web of Science和ScienceDirect在内的知名数据库进行了全面的文献综述。搜索集中在过去五年(2020 - 2025年)的出版物,并辅以早年的相关研究。使用了“抗氧化剂”、“脂质过氧化”、“癌症治疗中的纳米技术”和“氧化应激”等关键词。对相关文章进行了批判性分析,并制作了图表说明。 结果:新出现的证据表明,包括脂质体、聚合物纳米颗粒、金属有机框架等在内的纳米颗粒可以有效地封装并控制抗氧化剂在肿瘤细胞中的释放,同时将全身毒性降至最低。具有肿瘤特异性靶向机制的刺激响应载体进一步增强了抗氧化剂的递送。研究表明,这些策略有助于保护正常细胞,减轻氧化应激相关损伤,并提高治疗效果。然而,生物利用度、稳定性以及与标准疗法的潜在相互作用等挑战仍然存在。 结论:将纳米技术与基于抗氧化剂的干预措施相结合为优化癌症治疗提供了一种有前景的方法。未来的研究应专注于完善脂质过氧化调节策略,评估治疗期间的氧化应激状况,并采用生物标志物来确定最佳抗氧化剂剂量。一种平衡的抗氧化剂使用方法可能会提高治疗效果,同时将副作用降至最低。
Chem Phys Lipids. 2012-6-18
Clin Toxicol (Phila). 2019-12-6
Rev Environ Health. 2020-9-25
Curr Pharm Biotechnol. 2024-4-22
Cell Biochem Biophys. 2025-8-22
Antioxidants (Basel). 2025-2-15
Pharmaceutics. 2025-1-15
Antioxidants (Basel). 2025-1-20
Antioxidants (Basel). 2025-1-17
Antioxidants (Basel). 2025-1-15
Cell Death Discov. 2025-1-24
Diseases. 2025-1-17