文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

癌症治疗中的抗氧化剂通过纳米技术减轻脂质过氧化而不影响治疗效果。

Antioxidants in cancer therapy mitigating lipid peroxidation without compromising treatment through nanotechnology.

作者信息

Uti Daniel Ejim, Atangwho Item Justin, Alum Esther Ugo, Ntaobeten Emmanuella, Obeten Uket Nta, Bawa Inalegwu, Agada Samuel A, Ukam Catherine Ironya-Ogar, Egbung Godwin Eneji

机构信息

Department of Biochemistry, Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda.

Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria.

出版信息

Discov Nano. 2025 Apr 24;20(1):70. doi: 10.1186/s11671-025-04248-0.


DOI:10.1186/s11671-025-04248-0
PMID:40272665
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12021792/
Abstract

BACKGROUND: Cancer treatments often exploit oxidative stress to selectively kill tumour cells by disrupting their lipid peroxidation membranes and inhibiting antioxidant enzymes. However, lipid peroxidation plays a dual role in cancer progression, acting as both a tumour promoter and a suppressor. Balancing oxidative stress through antioxidant therapy remains a challenge, as excessive antioxidant activity may compromise the efficacy of chemotherapy and radiotherapy. AIM: This review explores the role of antioxidants in mitigating lipid peroxidation in cancer therapy while maintaining treatment efficacy. It highlights recent advancements in nanotechnology-based targeted antioxidant delivery to optimize therapeutic outcomes. METHODS: A comprehensive literature review was conducted using reputable databases, including PubMed, Scopus, Web of Science, and ScienceDirect. The search focused on publications from the past five years (2020-2025), supplemented by relevant studies from earlier years. Keywords such as "antioxidants," "lipid peroxidation," "nanotechnology in cancer therapy," and "oxidative stress" were utilized. Relevant articles were critically analysed, and graphical illustrations were created. RESULTS: Emerging evidence suggests that nanoparticles, including liposomes, polymeric nanoparticles, metal-organic frameworks, and others, can effectively encapsulate and control the release of antioxidants in tumour cells while minimizing systemic toxicity. Stimuli-responsive carriers with tumour-specific targeting mechanisms further enhance antioxidant delivery. Studies indicate that these strategies help preserve normal cells, mitigate oxidative stress-related damage, and improve treatment efficacy. However, challenges such as bioavailability, stability, and potential interactions with standard therapies remain. CONCLUSION: Integrating nanotechnology with antioxidant-based interventions presents a promising approach for optimizing cancer therapy. Future research should focus on refining lipid peroxidation modulation strategies, assessing oxidative stress profiles during treatment, and employing biomarkers to determine optimal antioxidant dosing. A balanced approach to antioxidant use may enhance therapeutic efficacy while minimizing adverse effects.

摘要

背景:癌症治疗常常利用氧化应激通过破坏肿瘤细胞的脂质过氧化膜并抑制抗氧化酶来选择性地杀死肿瘤细胞。然而,脂质过氧化在癌症进展中发挥着双重作用,既是肿瘤促进剂又是抑制剂。通过抗氧化疗法平衡氧化应激仍然是一项挑战,因为过度的抗氧化活性可能会损害化疗和放疗的疗效。 目的:本综述探讨抗氧化剂在减轻癌症治疗中脂质过氧化同时维持治疗效果方面的作用。它强调了基于纳米技术的靶向抗氧化剂递送以优化治疗结果的最新进展。 方法:使用包括PubMed、Scopus、Web of Science和ScienceDirect在内的知名数据库进行了全面的文献综述。搜索集中在过去五年(2020 - 2025年)的出版物,并辅以早年的相关研究。使用了“抗氧化剂”、“脂质过氧化”、“癌症治疗中的纳米技术”和“氧化应激”等关键词。对相关文章进行了批判性分析,并制作了图表说明。 结果:新出现的证据表明,包括脂质体、聚合物纳米颗粒、金属有机框架等在内的纳米颗粒可以有效地封装并控制抗氧化剂在肿瘤细胞中的释放,同时将全身毒性降至最低。具有肿瘤特异性靶向机制的刺激响应载体进一步增强了抗氧化剂的递送。研究表明,这些策略有助于保护正常细胞,减轻氧化应激相关损伤,并提高治疗效果。然而,生物利用度、稳定性以及与标准疗法的潜在相互作用等挑战仍然存在。 结论:将纳米技术与基于抗氧化剂的干预措施相结合为优化癌症治疗提供了一种有前景的方法。未来的研究应专注于完善脂质过氧化调节策略,评估治疗期间的氧化应激状况,并采用生物标志物来确定最佳抗氧化剂剂量。一种平衡的抗氧化剂使用方法可能会提高治疗效果,同时将副作用降至最低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f6/12021792/174136d1dc53/11671_2025_4248_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f6/12021792/78ff5aa18744/11671_2025_4248_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f6/12021792/16b3f87d6ccf/11671_2025_4248_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f6/12021792/174136d1dc53/11671_2025_4248_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f6/12021792/78ff5aa18744/11671_2025_4248_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f6/12021792/16b3f87d6ccf/11671_2025_4248_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f6/12021792/174136d1dc53/11671_2025_4248_Fig3_HTML.jpg

相似文献

[1]
Antioxidants in cancer therapy mitigating lipid peroxidation without compromising treatment through nanotechnology.

Discov Nano. 2025-4-24

[2]
Role of Antioxidants in Modulating the Microbiota-Gut-Brain Axis and Their Impact on Neurodegenerative Diseases.

Int J Mol Sci. 2025-4-12

[3]
Evaluation of antioxidants: scope, limitations and relevance of assays.

Chem Phys Lipids. 2012-6-18

[4]
Does oxidative stress contribute to toxicity in acute organophosphorus poisoning? - a systematic review of the evidence.

Clin Toxicol (Phila). 2019-12-6

[5]
Toxicity of carbon tetrachloride, free radicals and role of antioxidants.

Rev Environ Health. 2020-9-25

[6]
STUDY OF THE PROCESSES OF LIPID PEROXIDATION, THE STATE OF THE ANTIOXIDANT SYSTEM IN PATIENTS WITH POLYTRAUMA AND ALCOHOL ANAMNESIS.

Georgian Med News. 2023-4

[7]
Mitigating Cold Ischemic Injury: HTK, UW and IGL-2 Solution's Role in Enhancing Antioxidant Defence and Reducing Inflammation in Steatotic Livers.

Int J Mol Sci. 2024-8-28

[8]
Nanotechnology Integrated Innovative Drug Delivery and Therapy for Cancer.

Curr Pharm Biotechnol. 2024-4-22

[9]
Synergistic combinatorial antihyperlipidemic study of selected natural antioxidants; modulatory effects on lipid profile and endogenous antioxidants.

Lipids Health Dis. 2016-9-9

[10]
Nano-Se attenuates cyclophosphamide-induced pulmonary injury through modulation of oxidative stress and DNA damage in Swiss albino mice.

Mol Cell Biochem. 2015-7

引用本文的文献

[1]
Combined Hyaluronic Acid Nanobioconjugates Impair CD44-Signaling for Effective Treatment Against Obesity: A Review of Comparison with Other Actors.

Int J Nanomedicine. 2025-8-21

[2]
Unlocking the Secrets of Nature: Phytochemicals as Key Players in Longevity and Healthy Aging.

Cell Biochem Biophys. 2025-8-22

[3]
Exosomes in Hepatocellular Carcinoma: A Comprehensive Review of Current Research and Future Directions.

J Cell Mol Med. 2025-7

本文引用的文献

[1]
Transformative Impact of Nanocarrier-Mediated Drug Delivery: Overcoming Biological Barriers and Expanding Therapeutic Horizons.

Small Sci. 2024-9-17

[2]
Nanoparticles with Antioxidant Activity.

Antioxidants (Basel). 2025-2-15

[3]
Gamma-Tocopherol: A Comprehensive Review of Its Antioxidant, Anti-Inflammatory, and Anticancer Properties.

Molecules. 2025-2-1

[4]
Pan-cancer and experimental analyses reveal the immunotherapeutic significance of CST2 and its association with stomach adenocarcinoma proliferation and metastasis.

Front Immunol. 2025-1-24

[5]
Curcumin-Based Nanoparticles: Advancements and Challenges in Tumor Therapy.

Pharmaceutics. 2025-1-15

[6]
Exploring Strategies to Prevent and Treat Ovarian Cancer in Terms of Oxidative Stress and Antioxidants.

Antioxidants (Basel). 2025-1-20

[7]
Role of Oxidative Stress in the Occurrence, Development, and Treatment of Breast Cancer.

Antioxidants (Basel). 2025-1-17

[8]
Hypoxia-Induced Reactive Oxygen Species: Their Role in Cancer Resistance and Emerging Therapies to Overcome It.

Antioxidants (Basel). 2025-1-15

[9]
Free radicals and their impact on health and antioxidant defenses: a review.

Cell Death Discov. 2025-1-24

[10]
Resistance to Radiotherapy in Cancer.

Diseases. 2025-1-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索