利用深度学习模型提高游牧牧民在健康宣传活动和人口监测中的代表性。
Leveraging deep learning models to increase the representation of nomadic pastoralists in health campaigns and demographic surveillance.
作者信息
Liu Benjamin, Maples Stace, Kong Jessie, Fava Francesco, Jenson Nathaniel, Chelanga Philemon, Charles Sergio, Hassell James, Robinson Lance W, Glowacki Luke, Barry Michele, Wild Hannah B
机构信息
Department of Computer Science, Stanford University, Stanford, California, United States of America.
Department of Surgery, Stanford University, Stanford, California, United States of America.
出版信息
PLOS Glob Public Health. 2025 Apr 24;5(4):e0004018. doi: 10.1371/journal.pgph.0004018. eCollection 2025.
Nomadic pastoralists are systematically underrepresented in the planning of health services and frequently missed by health campaigns due to their mobility. Previous studies have developed novel geospatial methods to address these challenges but rely on manual techniques that are too time and resource-intensive to scale on a national or regional level. To address this gap, we developed a computer vision-based approach to automatically locate active nomadic pastoralist settlements from satellite imagery. We curated labeled datasets of satellite images capturing approximately 1,000 historically active settlements in the Omo Valley of Ethiopia and the Samburu County of Kenya to train and evaluate deep learning models, studying their robustness to low spatial resolutions and limits in labeled training data. Using a novel training strategy that leveraged public road and water infrastructure data, we closed performance gaps introduced by shortages in labeled settlement data. We deployed our best model on a region spanning 5,400 square kilometers in the Omo Valley of Ethiopia, resulting in the identification of historical settlements with a 270-fold reduction in manual review volume. Our work serves as a promising framework for automating the localization of nomadic pastoralist settlements at a national scale for health campaigns and demographic surveillance.
游牧牧民在卫生服务规划中的代表性系统性不足,且由于其流动性,他们经常被卫生运动所忽视。以往的研究已经开发出新颖的地理空间方法来应对这些挑战,但依赖于手工技术,这些技术在国家或地区层面进行扩展时过于耗费时间和资源。为了弥补这一差距,我们开发了一种基于计算机视觉的方法,用于从卫星图像中自动定位活跃的游牧牧民定居点。我们精心整理了卫星图像的标记数据集,这些图像捕捉了埃塞俄比亚奥莫河谷和肯尼亚桑布鲁县约1000个历史上活跃的定居点,以训练和评估深度学习模型,研究它们对低空间分辨率和标记训练数据限制的鲁棒性。通过使用一种利用公共道路和水利基础设施数据的新颖训练策略,我们缩小了标记定居点数据短缺所导致的性能差距。我们将最佳模型部署在埃塞俄比亚奥莫河谷一个面积达5400平方公里的区域,使得手动审核量减少了270倍,从而识别出了历史定居点。我们的工作为在全国范围内自动定位游牧牧民定居点以开展卫生运动和人口监测提供了一个很有前景的框架。
相似文献
PLOS Glob Public Health. 2025-4-24
Am J Trop Med Hyg. 2019-9
PLoS Negl Trop Dis. 2023-12
BMC Public Health. 2009-1-7
本文引用的文献
Int J Appl Earth Obs Geoinf. 2022-6
Trop Med Int Health. 2020-11
PLoS Negl Trop Dis. 2020-7-27
IEEE Trans Pattern Anal Mach Intell. 2021-10
Am J Trop Med Hyg. 2019-9
Rev Sci Tech. 2016-11