Chen Xi, Sreenivasan Katepalli R
Key Laboratory of Fluid Mechanics of Ministry of Education, Institute of Fluid Mechanics, Beihang University (Beijing University of Aeronautics and Astronautics), Beijing 100191, People's Republic of China.
Tandon School of Engineering, Department of Physics, Courant Institute of Mathematical Sciences, New York University, New York 10012, NY.
Proc Natl Acad Sci U S A. 2025 Apr 29;122(17):e2502265122. doi: 10.1073/pnas.2502265122. Epub 2025 Apr 24.
Understanding the effects of solid boundaries on turbulent fluctuations remains a long-standing challenge. Available data on mean-square fluctuations in these flows show apparent contradiction with classical scaling. We had earlier proposed an alternative model based on the principle of bounded dissipation. Despite its putative success, a conclusive outcome requires much higher Reynolds numbers than are available at present, or can be expected to be available in the near future. However, the model can be validated satisfactorily even within the Reynolds number range already available by considering high-order moments and their distributions in the wall-normal direction. Expressions for high-order moments of streamwise velocity fluctuation [Formula: see text] are derived in the form [Formula: see text], where the superscript [Formula: see text] indicates the wall unit normalization, and brackets stand for averages over time and the homogeneous plane normal to the wall, [Formula: see text] is an integer, [Formula: see text] and [Formula: see text] are constants independent of the friction Reynolds number [Formula: see text], and [Formula: see text] is the distance away from the wall, normalized by the flow thickness [Formula: see text]. In particular, [Formula: see text] according to the "linear q-norm Gaussian" process, where [Formula: see text] and [Formula: see text] are flow-independent constants. Excellent agreement is found between this formula and the available data in boundary layers, pipes, and channels for [Formula: see text]. For fixed [Formula: see text], the present formulation leads to the bounded state [Formula: see text] as [Formula: see text]. This work demonstrates the success of the present model in describing the behavior of fluctuations in wall flows.
理解固体边界对湍流脉动的影响仍然是一个长期存在的挑战。这些流动中均方脉动的现有数据与经典标度律存在明显矛盾。我们之前基于有界耗散原理提出了一个替代模型。尽管该模型被认为取得了成功,但要得出确凿的结果需要比目前可用的雷诺数高得多的雷诺数,或者预计在不久的将来也无法获得这样高的雷诺数。然而,即使在现有的雷诺数范围内,通过考虑高阶矩及其在壁面法向方向上的分布,该模型也能得到令人满意的验证。流向速度脉动的高阶矩[公式:见原文]的表达式推导为[公式:见原文],其中上标[公式:见原文]表示壁面单位归一化,方括号表示时间平均以及垂直于壁面的均匀平面平均,[公式:见原文]是整数,[公式:见原文]和[公式:见原文]是与摩擦雷诺数[公式:见原文]无关的常数,[公式:见原文]是离壁面的距离,通过流动厚度[公式:见原文]归一化。特别地,根据“线性q - 范数高斯”过程,[公式:见原文],其中[公式:见原文]和[公式:见原文]是与流动无关的常数。对于[公式:见原文],该公式与边界层、管道和通道中的现有数据之间发现了极好的一致性。对于固定的[公式:见原文],当[公式:见原文]时,本公式导致有界状态[公式:见原文]。这项工作证明了本模型在描述壁面流动中脉动行为方面的成功。