Sunkonkit Kanokkarn, Chai-Adisaksopha Chatree, Natesirinilkul Rungrote, Phinyo Phichayut, Trongtrakul Konlawij
Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
Center for Clinical Epidemiology and Clinical Statistics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
PLoS One. 2025 Apr 24;20(4):e0322050. doi: 10.1371/journal.pone.0322050. eCollection 2025.
Mortality rates among critically ill pediatric patients remain a persistent challenge. It is imperative to identify patients at higher risk to effectively allocate appropriate resources. Our study aimed to develop a prediction score based on clinical parameters and hemogram to predict pediatric intensive care unit (PICU) mortality.
We conducted a retrospective study to develop a clinical prediction score using data from children aged 1 month to 18 years admitted for at least 24 hours to the PICU at Chiang Mai University between January 2018 and December 2022. PICU mortality was defined as death within 28 days of admission. The score was developed using multivariable logistic regression and assessed for calibration and discrimination.
There were 29 deaths in 330 children (8.8%). Our model for predicting 28-day ICU mortality uses four key predictors: male gender, use of vasoactive drugs, red blood cell distribution width (RDW) ≥15.9%, and platelet distribution width (PDW), categorized as follows: <10% (0 points), 10-14.9% (2 points), and ≥15% (4 points). Scores range from 0 to 8, with a cutoff value of 5 to differentiate low-risk (<5) from high-risk (≥5) groups. The tool demonstrates excellent performance with an AuROC curve of 0.86 (95% CI: 0.80-0.91, p<0.001) showing excellent discrimination and calibration, 82.8% sensitivity, and 73.1% specificity, respectively.
The score, developed from clinical data and hemogram, demonstrated potential in predicting ICU mortality among critically ill children. However, further studies are necessary to externally validate the score before it can be confidentially implemented in clinical practices.
危重症儿科患者的死亡率仍然是一个长期存在的挑战。识别高危患者对于有效分配适当资源至关重要。我们的研究旨在基于临床参数和血常规制定一个预测评分,以预测儿科重症监护病房(PICU)的死亡率。
我们进行了一项回顾性研究,利用2018年1月至2022年12月期间在清迈大学PICU住院至少24小时的1个月至18岁儿童的数据来制定临床预测评分。PICU死亡率定义为入院后28天内死亡。该评分通过多变量逻辑回归得出,并评估其校准和区分能力。
330名儿童中有29例死亡(8.8%)。我们预测28天ICU死亡率的模型使用四个关键预测因素:男性、使用血管活性药物、红细胞分布宽度(RDW)≥15.9%以及血小板分布宽度(PDW),分类如下:<10%(0分)、10 - 14.9%(2分)和≥15%(4分)。评分范围为0至8分,临界值为5分,以区分低风险(<5分)和高风险(≥5分)组。该工具表现出色,曲线下面积(AuROC)为0.86(95%可信区间:0.80 - 0.91,p<0.001),分别显示出出色的区分能力和校准能力,敏感性为82.8%,特异性为73.1%。
从临床数据和血常规得出的该评分在预测危重症儿童的ICU死亡率方面显示出潜力。然而,在能够在临床实践中放心应用之前,有必要进行进一步研究以对该评分进行外部验证。