Suppr超能文献

用于无阳极锂金属电池中锂无缝沉积的相间化学设计

Interphasial Chemistry Design for Seamless Lithium Deposition in Anode-Free Lithium Metal Batteries.

作者信息

Song Xuan, Liu Cheng, Zhang Aiyuan, Ding Li, Zeng Tianyou, Lu Yang, Ou Yu, Hou Wenhui, Zhou Pan, Cao Qingbin, Yan Shuaishuai, Liu Zhi, Peng Xuwen, Zhou Haiyu, Xia Yingchun, Zhang Weili, Liu Hao, Liu Kai

机构信息

Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.

China Academy of Space Technology, Beijing, 100094, China.

出版信息

Adv Mater. 2025 Jul;37(28):e2500478. doi: 10.1002/adma.202500478. Epub 2025 Apr 24.

Abstract

Anode-free lithium metal batteries (AFLMBs) are promising due to ultrahigh energy density, reduced manufacturing costs, and enhanced safety through active lithium elimination. However, their practical implementation remains challenged by unstable electrode-electrolyte interfaces and the resulting rapid active species depletion. Herein, an ultrathin ion-conducting membrane (ICM) is designed, featuring uniformly distributed rigid benzenesulfonimide anionic groups and flexible lithiophilic groups containing ether oxygen groups. The constrained benzenesulfonimide anions enable exceptional charge separation and reduced spatial resistance, boosting lithium-ion mobility, while the integrated lithophilic network directs lateral lithium deposition through ionic nanochannels. This ICM layer effectively promotes the enrichment of anions at the interface and constructs stable anion-derived solid electrolyte interphases (SEI). Meanwhile, ICM layers with electron-insulating and ion-conducting properties can further prevent side reactions, and suppress dendritic Li growth acting as a natural shield, resulting in seamless lithium deposition. Specifically, the Li||Cu coin cells with ICM achieve 99.82% Coulombic efficiency. The AFLMBs assembled with ICM-coated copper foil (ICM Cu) and NCM811 deliver an energy density of 495 Wh kg with 80.72% capacity retention after 100 cycles. The interphasial chemistry design strategy provides insights into the precise interfacial engineering to realize high-performance, high-safety battery systems and facilitates their development for practical applications.

摘要

无阳极锂金属电池(AFLMBs)因其超高的能量密度、降低的制造成本以及通过消除活性锂提高安全性而具有广阔前景。然而,其实际应用仍面临电极 - 电解质界面不稳定以及由此导致的活性物质快速消耗的挑战。在此,设计了一种超薄离子传导膜(ICM),其具有均匀分布的刚性苯磺酰亚胺阴离子基团和含醚氧基团的柔性亲锂基团。受限的苯磺酰亚胺阴离子实现了优异的电荷分离并降低了空间电阻,提高了锂离子迁移率,而集成的亲锂网络通过离子纳米通道引导横向锂沉积。该ICM层有效地促进了界面处阴离子的富集,并构建了稳定的阴离子衍生固体电解质界面(SEI)。同时,具有电子绝缘和离子传导特性的ICM层可以进一步防止副反应,并抑制树枝状锂的生长,起到天然屏障的作用,实现无缝锂沉积。具体而言,带有ICM的Li||Cu硬币电池实现了99.82%的库仑效率。用ICM涂覆的铜箔(ICM Cu)和NCM811组装的AFLMBs在100次循环后能量密度为495 Wh kg,容量保持率为80.72%。相间化学设计策略为实现高性能、高安全性电池系统的精确界面工程提供了见解,并促进了其在实际应用中的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验