Mai Quan-Doan, Thi Hanh Trang Dang, Thi Loan Ngo, Tran Thi Nhu Hoa, Van Hoang Ong, Ngoc Bach Ta, Quang Hoa Nguyen, Pham Anh-Tuan, Le Anh-Tuan
Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
Faculty of Materials Science and Technology, University of Science Ho Chi Minh City Vietnam.
RSC Adv. 2025 Apr 24;15(17):13172-13187. doi: 10.1039/d5ra01238d. eCollection 2025 Apr 22.
Surface-enhanced Raman spectroscopy (SERS) offers significant advantages, including label-free, non-invasive analysis and ultrasensitivity down to the single-molecule level, making it widely applicable in analytical chemistry and biology. However, its effectiveness is limited when detecting molecules with inherently low Raman scattering cross-sections, restricting its broader applications. In this study, we apply the photo-induced-photo-catalytic SERS (PI-PC SERS) technique, utilizing an Ag-deposited TiO nanorod (Ag/TiO NR) substrate to overcome this limitation. The PI-PC SERS technique combines two optoelectronic effects: photo-induced enhanced Raman scattering (PIERS) and the photocatalytic activity of the metal/semiconductor substrate. PIERS amplifies Raman signals beyond normal SERS, while the photocatalytic effect facilitates the removal of residual analytes. The PI-PC SERS process follows three sequential irradiation steps: (i) pre-irradiation with 365 nm UV light to activate PIERS, (ii) laser excitation at 785 nm to capture the enhanced Raman signal, and (iii) post-irradiation with 365 nm UV light to trigger photocatalytic degradation. Two low Raman cross-section molecules, 4-nitrophenol (a widely used pesticide) and urea (an important biomarker), were selected to evaluate the performance of the PI-PC SERS technique on the Ag/TiO NR substrate. The results demonstrated that PI-PC SERS not only enhanced detection sensitivity tenfold compared to normal SERS but also enabled self-cleaning by efficiently removing residual analytes after measurement, ensuring substrate reusability. These findings pave the way for advancing SERS-based techniques for detecting low Raman cross-section molecules while broadening their potential applications in chemical and biological sensing fields.
表面增强拉曼光谱(SERS)具有显著优势,包括无需标记、非侵入性分析以及低至单分子水平的超灵敏度,使其在分析化学和生物学中得到广泛应用。然而,在检测具有固有低拉曼散射截面的分子时,其有效性受到限制,从而限制了其更广泛的应用。在本研究中,我们应用光诱导光催化SERS(PI-PC SERS)技术,利用沉积银的TiO纳米棒(Ag/TiO NR)基底来克服这一限制。PI-PC SERS技术结合了两种光电效应:光诱导增强拉曼散射(PIERS)和金属/半导体基底的光催化活性。PIERS将拉曼信号放大到超过正常SERS的水平,而光催化效应有助于去除残留分析物。PI-PC SERS过程遵循三个连续的辐照步骤:(i)用365 nm紫外光预辐照以激活PIERS,(ii)用785 nm激光激发以捕获增强的拉曼信号,以及(iii)用365 nm紫外光后辐照以触发光催化降解。选择了两种低拉曼截面分子,4-硝基苯酚(一种广泛使用的农药)和尿素(一种重要的生物标志物),来评估PI-PC SERS技术在Ag/TiO NR基底上的性能。结果表明,PI-PC SERS不仅比正常SERS提高了十倍的检测灵敏度,而且在测量后通过有效去除残留分析物实现了自清洁,确保了基底的可重复使用性。这些发现为推进基于SERS的技术检测低拉曼截面分子铺平了道路,同时拓宽了它们在化学和生物传感领域的潜在应用。