文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Functionalized gold nanoflowers on carbon screen-printed electrodes: an electrochemical platform for biosensing hemagglutinin protein of influenza A H1N1 virus.

作者信息

Torres-Méndez Carlos Enrique, Nandi Sharmilee, Martinovic Klara, Kühne Patrizia, Liu Yifan, Taylor Sam, Lysandrou Maria, Mascarenhas Maria Ines Berrojo Romeyro, Langwallner Viktoria, Alonso Javier Enrique Sebastián, Jovanovic Ivana, Lüftner Maike, Gkountana Georgia-Vasiliki, Bern David, Atif Abdul-Raouf, Manouchehri Doulabi Ehsan, Mestres Gemma, Kamali-Moghaddam Masood

机构信息

Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden.

Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.

出版信息

Beilstein J Nanotechnol. 2025 Apr 16;16:540-550. doi: 10.3762/bjnano.16.42. eCollection 2025.


DOI:10.3762/bjnano.16.42
PMID:40275987
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12018907/
Abstract

An electrochemical biosensor based on modified carbon screen-printed electrodes was developed for the detection of hemagglutinin of influenza A H1N1 virus (H1). Gold nanoflowers were electrodeposited on the electrode to increase conductivity and surface area. The electrochemical signal was amplified by functionalization of the gold nanoflowers with 4-aminothiophenol, which resulted in a 100-fold decrease of the charge transfer resistance due to a tunneling effect. Subsequently, monoclonal antibodies against H1 were immobilized on the surface via covalent amide bond formation, followed by blocking with bovine serum albumin to minimize nonspecific hydrophobic binding. The electrodes were characterized by cyclic voltammetry and electrochemical impedance spectroscopy experiments in the presence of [Fe(CN)]. Differential pulse voltammetry was used to measure the change in current across the electrode as a function of H1 concentration. This was performed on a series of samples of artificial saliva containing H1 protein in a clinically relevant concentration range. In these experiments, the biosensor showed a limit of detection of 19 pg/mL. Finally, the biosensor platform was coupled to an automated microfluidics system, and no significant decrease of the electrochemical signal was observed.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7291/12018907/8adc0d8d38db/Beilstein_J_Nanotechnol-16-540-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7291/12018907/a1b96527371c/Beilstein_J_Nanotechnol-16-540-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7291/12018907/e93fee9148cd/Beilstein_J_Nanotechnol-16-540-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7291/12018907/77f375c31800/Beilstein_J_Nanotechnol-16-540-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7291/12018907/cc7afafadf2d/Beilstein_J_Nanotechnol-16-540-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7291/12018907/d095f4bb963d/Beilstein_J_Nanotechnol-16-540-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7291/12018907/d3d62545164f/Beilstein_J_Nanotechnol-16-540-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7291/12018907/783026c522a0/Beilstein_J_Nanotechnol-16-540-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7291/12018907/7d4d9abfe826/Beilstein_J_Nanotechnol-16-540-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7291/12018907/8adc0d8d38db/Beilstein_J_Nanotechnol-16-540-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7291/12018907/a1b96527371c/Beilstein_J_Nanotechnol-16-540-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7291/12018907/e93fee9148cd/Beilstein_J_Nanotechnol-16-540-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7291/12018907/77f375c31800/Beilstein_J_Nanotechnol-16-540-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7291/12018907/cc7afafadf2d/Beilstein_J_Nanotechnol-16-540-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7291/12018907/d095f4bb963d/Beilstein_J_Nanotechnol-16-540-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7291/12018907/d3d62545164f/Beilstein_J_Nanotechnol-16-540-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7291/12018907/783026c522a0/Beilstein_J_Nanotechnol-16-540-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7291/12018907/7d4d9abfe826/Beilstein_J_Nanotechnol-16-540-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7291/12018907/8adc0d8d38db/Beilstein_J_Nanotechnol-16-540-g010.jpg

相似文献

[1]
Functionalized gold nanoflowers on carbon screen-printed electrodes: an electrochemical platform for biosensing hemagglutinin protein of influenza A H1N1 virus.

Beilstein J Nanotechnol. 2025-4-16

[2]
Electro-Nano Diagnostic Platform Based on Antibody-Antigen Interaction: An Electrochemical Immunosensor for Influenza A Virus Detection.

Biosensors (Basel). 2023-1-23

[3]
Determination of rSpike Protein by Specific Antibodies with Screen-Printed Carbon Electrode Modified by Electrodeposited Gold Nanostructures.

Biosensors (Basel). 2022-8-3

[4]
Fentogram electrochemical detection of HIV RNA based on graphene quantum dots and gold nanoparticles.

J Pharm Biomed Anal. 2024-5-15

[5]
An Electrochemical Aptasensor Platform Based on Flower-Like Gold Microstructure-Modified Screen-Printed Carbon Electrode for Detection of Serpin A12 as a Type 2 Diabetes Biomarker.

Int J Nanomedicine. 2020-3-31

[6]
Electrochemical biosensing based comparative study of monoclonal antibodies against SARS-CoV-2 nucleocapsid protein.

Sci Total Environ. 2024-1-15

[7]
Electrodeposited rGO/AuNP/MnO Nanocomposite-Modified Screen-Printed Carbon Electrode for Sensitive Electrochemical Sensing of Arsenic(III) in Water.

Biosensors (Basel). 2023-5-21

[8]
Lysozyme aptasensor based on a glassy carbon electrode modified with a nanocomposite consisting of multi-walled carbon nanotubes, poly(diallyl dimethyl ammonium chloride) and carbon quantum dots.

Mikrochim Acta. 2018-2-14

[9]
Impedance Technique-Based Label-Free Electrochemical Aptasensor for Thrombin Using Single-Walled Carbon Nanotubes-Casted Screen-Printed Carbon Electrode.

Sensors (Basel). 2022-3-31

[10]
Glycated Hemoglobin Electrochemical Immunosensor Based on Screen-Printed Electrode.

Biosensors (Basel). 2022-10-21

本文引用的文献

[1]
HCR-Assisted RTF-EXPAR-Based Lateral Flow Analysis for Sensitive Detection of H1N1 Influenza Virus.

Anal Chem. 2024-9-3

[2]
Microfluidic paper-based chemiluminescence sensing platform based on functionalized CaCO for time-resolved multiplex detection of avian influenza virus biomarkers.

Anal Biochem. 2024-10

[3]
Electrochemical biosensor based on antibody-modified Au nanoparticles for rapid and sensitive analysis of influenza A virus.

Ionics (Kiel). 2023

[4]
Development of amperometric biosensor based on cloned hemagglutinin gene of H1N1 (swine flu) virus.

3 Biotech. 2022-6

[5]
Dual synergistic response for the electrochemical detection of H1N1 virus and viral proteins using high affinity peptide receptors.

Talanta. 2022-10-1

[6]
Rapid detection of influenza A (H1N1) virus by conductive polymer-based nanoparticle via optical response to virus-specific binding.

Nano Res. 2022

[7]
Amine-functionalized Cu-MOF nanospheres towards label-free hepatitis B surface antigen electrochemical immunosensors.

J Mater Chem B. 2021-7-21

[8]
Biomimetic Nanopillar-Based Biosensor for Label-Free Detection of Influenza A Virus.

Biochip J. 2021

[9]
Saliva sample for the massive screening of SARS-CoV-2 infection: a systematic review.

Oral Surg Oral Med Oral Pathol Oral Radiol. 2021-5

[10]
Reusable surface plasmon resonance biosensor chip for the detection of H1N1 influenza virus.

Biosens Bioelectron. 2020-11-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索