Lee Jaeyeop, Jung Woon Ho, Lee Kyoungeun, Bae Yeyun, Choi Minseok, Oh Jiyoon, Lim Jaehoon, Roh Jeongkyun
Department of Electrical Engineering, Pusan National University 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu Busan 46241 Republic of Korea
Department of Energy Science, Center for Artificial Atoms, Sungkyunkwan University (SKKU) Suwon Gyeonggi-do 16419 Republic of Korea.
Nanoscale Adv. 2025 Apr 7;7(11):3449-3455. doi: 10.1039/d5na00120j. eCollection 2025 May 27.
High-performance quantum dot light-emitting diodes (QD-LEDs) require balanced electron and hole injection into the QD emissive layer-an especially difficult task when using all-solution processes. One effective strategy for achieving this balance is to create a stepwise hole injection pathway double-hole transport layers (D-HTLs). Poly(9-vinylcarbazole) (PVK) and poly[(9,9-dioctylfluorenyl-2,7-diyl)--(4,4'-(-(4--butylphenyl)diphenylamine))] (TFB) are commonly employed in D-HTLs because of their favorable energy level alignment and suitable hole mobilities. However, constructing TFB/PVK D-HTLs demands careful attention to solvent orthogonality, as both polymers often dissolve in the same solvent. Thus, identifying a solvent system that enables the formation of TFB/PVK D-HTLs without damaging the TFB layer is crucial. In this study, we systematically investigate the solvent orthogonality of TFB/PVK and demonstrate high-performance QD-LEDs fabricated entirely by solution processes. We examine various PVK solvents-evaluating their polarity, solubility, and potential to damage the TFB layer-and identify 1,2-dichloroethane (1,2-DCE) as optimal for forming TFB/PVK D-HTLs with minimal damage. The resulting all-solution-processed QD-LEDs exhibit a 1.5-fold increase in external quantum efficiency compared to devices employing a single HTL. Furthermore, 1,2-DCE also proves effective in inverted QD-LED architectures, protecting the QD emissive layer during PVK deposition and demonstrating its versatility across multiple device architectures.
高性能量子点发光二极管(QD-LED)需要将电子和空穴平衡注入到量子点发光层——这在使用全溶液工艺时是一项特别困难的任务。实现这种平衡的一种有效策略是创建一个逐步的空穴注入路径,即双空穴传输层(D-HTL)。聚(9-乙烯基咔唑)(PVK)和聚[(9,9-二辛基芴-2,7-二亚基)-(4,4'-(-(4-丁基苯基)二苯胺))](TFB)由于其良好的能级排列和合适的空穴迁移率,常用于D-HTL中。然而,构建TFB/PVK D-HTL需要特别注意溶剂的正交性,因为这两种聚合物通常会溶解在同一种溶剂中。因此,确定一种能够形成TFB/PVK D-HTL而不损坏TFB层的溶剂体系至关重要。在本研究中,我们系统地研究了TFB/PVK的溶剂正交性,并展示了完全通过溶液工艺制备的高性能QD-LED。我们研究了各种PVK溶剂——评估它们的极性、溶解性以及损坏TFB层的可能性——并确定1,2-二氯乙烷(1,2-DCE)是形成TFB/PVK D-HTL且损坏最小的最佳溶剂。与采用单一HTL的器件相比,由此得到的全溶液工艺QD-LED的外量子效率提高了1.5倍。此外,1,2-DCE在倒置QD-LED结构中也被证明是有效的,在PVK沉积过程中保护量子点发光层,并展示了其在多种器件结构中的通用性。