Fan Xiaoli, Zhu He, Wang Jingming, Dai Ziyi, Zhang Shan, Huang Weimin, Cai Rong, Qian Kai
School of Integrated Circuits, Shandong University, Jinan, 250101, China.
Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200092, China.
Small Methods. 2025 Aug;9(8):e2500292. doi: 10.1002/smtd.202500292. Epub 2025 Apr 25.
Degenerative disc disease (DDD) affects millions globally, with artificial total disc replacement (A-TDR) emerging as a key surgical intervention to restore spinal function and mobility. Current implantable prostheses incorporating multi-component architectures to replicate the functional heterogeneity of natural intervertebral discs (IVD) face challenges in achieving mechanical and physiological compatibility. Inspired by the natural IVD's structure, where a soft nucleus pulposus (NP) is encased by a tough annulus fibrosus (AF), a water transport-modulated directional annealing casting (DAC) approach has been developed to construct bulk hydrogels with tunable mechanical properties (up to ≈36.69 MPa compressive strength with ≈5.35 MPa modulus). This strategy enables the fabrication of an integrated hydrogel-based IVD (H-IVD) with biomechanically gradient structures, featuring a high-strength AF region (compressive modulus ≈2.77 MPa) seamlessly transitioning to a compliant NP core (modulus ≈0.26 MPa) while maintaining physiological water content throughout. The H-IVD exhibits excellent biocompatibility and load-bearing capacity, with inherent stress-sensing capabilities enabling dynamic functional assessment of spinal biomechanics. Furthermore, this integrated design strategy demonstrates broad applicability for engineering various dimensionally-controlled biomimetic tissues, from simple 1D structures to complex 3D organs requiring precise spatial control of material properties.
退行性椎间盘疾病(DDD)在全球范围内影响着数百万人,人工全椎间盘置换术(A-TDR)作为恢复脊柱功能和活动能力的关键手术干预手段应运而生。目前,用于复制天然椎间盘(IVD)功能异质性的可植入假体采用多组件结构,在实现机械和生理兼容性方面面临挑战。受天然IVD结构的启发,即柔软的髓核(NP)被坚韧的纤维环(AF)包裹,一种水传输调制的定向退火铸造(DAC)方法已被开发出来,用于构建具有可调机械性能的块状水凝胶(抗压强度高达约36.69MPa,模量约为5.35MPa)。这种策略能够制造出具有生物力学梯度结构的基于水凝胶的集成式椎间盘(H-IVD),其特点是高强度的AF区域(压缩模量约为2.77MPa)无缝过渡到顺应性的NP核心(模量约为0.26MPa),同时在整个过程中保持生理含水量。H-IVD具有出色的生物相容性和承载能力,其固有的应力传感能力能够对脊柱生物力学进行动态功能评估。此外,这种集成设计策略在工程设计各种尺寸可控的仿生组织方面具有广泛的适用性,从简单的一维结构到需要精确控制材料性能空间的复杂三维器官。