Han Ju-Hyoung, Park Jaeeun, Kim Mincheal, Lee Sungwoo, Heo Jin Myeong, Jin Young Ho, Chae Yujin, Han Juwon, Wang Jaewon, Seok Shi-Hyun, Sim Yeoseon, Byun Gangil, Lee Gun-Do, Choi EunMi, Kwon Soon-Yong
Department of Materials Science and Engineering and Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
Adv Mater. 2025 Jul;37(27):e2502443. doi: 10.1002/adma.202502443. Epub 2025 Apr 25.
Broadband and ultrathin electromagnetic interference (EMI)-shielding materials are crucial for efficient high-frequency data transmission in emerging technologies. MXenes are renowned for their outstanding electrical conductivity and EMI-shielding capability. While substituting nitrogen (N) for carbon (C) atoms in the conventional MXene structure is theoretically expected to enhance these properties, synthesis challenges have hindered progress. Here, it is demonstrated that TiCN T MXene films with optimized N content achieve a record-high electrical conductivity of 35 000 S cm and exceptional broadband EMI shielding across the X (8-12.4 GHz), K (26.5-40 GHz), and W (75-110 GHz) bands-outperforming all previously reported materials even at reduced thicknesses. By synthesizing a full series of high-stoichiometric TiAlCN MAX phases without intermediate phases, the impact of N substitution on the physical and electrical properties of TiCN T MXene flakes is systematically explored, achieving complete composition tunability in both dispersion and film forms. These findings position TiCN T MXenes as promising candidates for applications spanning from conventional lower-frequency domains to next-generation sub-THz electronics.
宽带超薄电磁干扰(EMI)屏蔽材料对于新兴技术中高效的高频数据传输至关重要。MXenes以其出色的导电性和EMI屏蔽能力而闻名。虽然理论上预计在传统MXene结构中用氮(N)取代碳(C)原子会增强这些性能,但合成方面的挑战阻碍了进展。在此,研究表明,具有优化N含量的TiCN T MXene薄膜实现了创纪录的35000 S/cm的高电导率,并在X(8 - 12.4 GHz)、K(26.5 - 40 GHz)和W(75 - 110 GHz)频段具有出色的宽带EMI屏蔽性能,即使在厚度降低的情况下也优于所有先前报道的材料。通过合成一系列无中间相的高化学计量比TiAlCN MAX相,系统地探索了N取代对TiCN T MXene薄片物理和电学性能的影响,在分散体和薄膜形式中都实现了完全的成分可调性。这些发现使TiCN T MXenes成为从传统低频领域到下一代亚太赫兹电子学等应用的有前途的候选材料。