文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种基于幅度分析的磁弹性生物传感方法用于定量血液凝固。

An Amplitude Analysis-Based Magnetoelastic Biosensing Method for Quantifying Blood Coagulation.

作者信息

Chen Xi, Wang Qiong, Deng Jinan, Hu Ning, Liao Yanjian, Yang Jun

机构信息

Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China.

Department of Basic Medicine, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China.

出版信息

Biosensors (Basel). 2025 Mar 29;15(4):219. doi: 10.3390/bios15040219.


DOI:10.3390/bios15040219
PMID:40277533
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12025017/
Abstract

Blood coagulation tests are crucial in the clinical management of cardiovascular diseases and preoperative diagnostics. However, the widespread adoption of existing detection devices, such as thromboelastography (TEG) instruments, is hindered by their bulky size, prohibitive cost, and lengthy detection times. In contrast, magnetoelastic sensors, known for their low cost and rapid response, have garnered attention for their potential application in various coagulation tests. These sensors function by detecting resonant frequency shifts in response to changes in blood viscosity during coagulation. Nevertheless, the frequency-based detection approach necessitates continuous and precise frequency scanning, imposing stringent demands on equipment design, processing, and analytical techniques. In contrast, amplitude-based detection methods offer superior applicability in many sensing scenarios. This paper presents a comprehensive study on signal acquisition from magnetoelastic sensors. We elucidate the mathematical relationship between the resonant amplitude of the response signal and liquid viscosity, propose a quantitative viscosity measurement method based on the maximum amplitude of the signal, and construct a corresponding sensing device. The proposed method was validated using glycerol solutions, demonstrating a sensitivity of 13.83 V/PasKgm and a detection limit of 0.0817 PasKgm. When applied to real-time monitoring of the coagulation process, the resulting coagulation curves and maximum amplitude (MA) parameters exhibited excellent consistency with standard TEG results ( values of 0.9552 and 0.9615, respectively). Additionally, other TEG parameters, such as R-time, K-time, and α-angle, were successfully obtained, effectively reflecting viscosity changes during blood coagulation.

摘要

凝血检测在心血管疾病的临床管理和术前诊断中至关重要。然而,现有检测设备,如血栓弹力图(TEG)仪器,因其体积庞大、成本高昂且检测时间长,其广泛应用受到阻碍。相比之下,磁弹性传感器以其低成本和快速响应而闻名,因其在各种凝血检测中的潜在应用而受到关注。这些传感器通过检测凝血过程中血液粘度变化引起的共振频率偏移来发挥作用。然而,基于频率的检测方法需要连续且精确的频率扫描,对设备设计、处理和分析技术提出了严格要求。相比之下,基于幅度的检测方法在许多传感场景中具有更高的适用性。本文对磁弹性传感器的信号采集进行了全面研究。我们阐明了响应信号的共振幅度与液体粘度之间的数学关系,提出了一种基于信号最大幅度的定量粘度测量方法,并构建了相应的传感装置。所提出的方法在甘油溶液中得到验证,灵敏度为13.83 V/PasKgm,检测限为0.0817 PasKgm。当应用于凝血过程的实时监测时,所得的凝血曲线和最大幅度(MA)参数与标准TEG结果表现出极好的一致性(分别为0.9552和0.9615)。此外,还成功获得了其他TEG参数,如R时间、K时间和α角,有效反映了血液凝固过程中的粘度变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0573/12025017/16b0eec5770e/biosensors-15-00219-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0573/12025017/33c72a6ad1da/biosensors-15-00219-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0573/12025017/b244a2147604/biosensors-15-00219-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0573/12025017/7cd6874b7233/biosensors-15-00219-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0573/12025017/9283202ff702/biosensors-15-00219-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0573/12025017/eb0a2ab0be4e/biosensors-15-00219-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0573/12025017/120ead074f1f/biosensors-15-00219-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0573/12025017/ccda1f6cc156/biosensors-15-00219-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0573/12025017/38ace3f6bfcc/biosensors-15-00219-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0573/12025017/16b0eec5770e/biosensors-15-00219-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0573/12025017/33c72a6ad1da/biosensors-15-00219-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0573/12025017/b244a2147604/biosensors-15-00219-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0573/12025017/7cd6874b7233/biosensors-15-00219-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0573/12025017/9283202ff702/biosensors-15-00219-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0573/12025017/eb0a2ab0be4e/biosensors-15-00219-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0573/12025017/120ead074f1f/biosensors-15-00219-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0573/12025017/ccda1f6cc156/biosensors-15-00219-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0573/12025017/38ace3f6bfcc/biosensors-15-00219-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0573/12025017/16b0eec5770e/biosensors-15-00219-g009.jpg

相似文献

[1]
An Amplitude Analysis-Based Magnetoelastic Biosensing Method for Quantifying Blood Coagulation.

Biosensors (Basel). 2025-3-29

[2]
[Relation of Thromboelastography with Coagulation Function and Plt Count in Different Coagulation States].

Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2018-12

[3]
Relation of thromboelastography parameters to conventional coagulation tests used to evaluate the hypercoagulable state of aged fracture patients.

Medicine (Baltimore). 2016-6

[4]
Monitoring blood coagulation with magnetoelastic sensors.

Biosens Bioelectron. 2003-5

[5]
Evaluation of coagulation stages of hemorrhaged swine: comparison of thromboelastography and rotational elastometry.

Blood Coagul Fibrinolysis. 2010-1

[6]
Establishing a normal reference range for thromboelastography in North Indian healthy volunteers.

Indian J Pathol Microbiol. 2014

[7]
[Comparison of thromboelastography and routine coagulation tests for evaluation of blood coagulation function in patients].

Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2015-4

[8]
Noncitrated whole blood is optimal for evaluation of postinjury coagulopathy with point-of-care rapid thrombelastography.

J Surg Res. 2009-9

[9]
Comparative studies between humans and golden Syrian hamsters via thromboelastography.

Animal Model Exp Med. 2024-8

[10]
[Evaluation of coagulation disorders with thrombelastography in patients with sepsis].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2016-2

本文引用的文献

[1]
Navigating sensor-skin coupling challenges in magnetic-based blood pressure monitoring: Innovations and clinical implications for hypertension and aortovascular disease management.

Curr Probl Cardiol. 2025-3

[2]
Magnetoelastic Immunosensor for the Rapid Detection of SARS-CoV-2 in Bioaerosols.

ACS Sens. 2024-11-22

[3]
Soil and water pollution and cardiovascular disease.

Nat Rev Cardiol. 2025-2

[4]
A smartphone-based multichannel magnetoelastic immunosensor for acute aortic dissection supplementary diagnosis.

Talanta. 2025-1-1

[5]
Coagulation factors VIII and factors IX testing practices in China: Results of the 5-year external quality assessment program.

Clin Chim Acta. 2025-1-15

[6]
Novel flexible magnetoelastic biosensor based on PDMS/FeSiB/QD composite film for the detection of African swine fever virus P72 protein.

Anal Methods. 2024-8-8

[7]
GaN integrated optical devices for glycerol viscosity measurement.

Opt Lett. 2024-5-1

[8]
Nomogram model combined thrombelastography for venous thromboembolism risk in patients undergoing lung cancer surgery.

Front Physiol. 2023-12-14

[9]
Self-anticoagulant sponge for whole blood auto-transfusion and its mechanism of coagulation factor inactivation.

Nat Commun. 2023-8-12

[10]
A cost-effective smartphone-based device for rapid -reaction protein (CRP) detection using magnetoelastic immunosensor.

Lab Chip. 2023-4-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索