Zandbagleh Ahmad, Sanei Saeid, Penalba-Sánchez Lucía, Rodrigues Pedro Miguel, Crook-Rumsey Mark, Azami Hamed
School of Electrical Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran.
Electrical and Electronic Engineering Department, Imperial College London, London SW7 2AZ, UK.
Biosensors (Basel). 2025 Apr 9;15(4):240. doi: 10.3390/bios15040240.
Aging and poor sleep quality are associated with altered brain dynamics, yet current electroencephalography (EEG) analyses often overlook regional complexity. This study addresses this gap by introducing a novel integration of intra- and inter-regional complexity analysis using multivariate multiscale dispersion entropy (mvMDE) from awake resting-state EEG for the first time. Moreover, assessing both intra- and inter-regional complexity provides a comprehensive perspective on the dynamic interplay between localized neural activity and its coordination across brain regions, which is essential for understanding the neural substrates of aging and sleep quality. Data from 58 participants-24 young adults (mean age = 24.7 ± 3.4) and 34 older adults (mean age = 72.9 ± 4.2)-were analyzed, with each age group further divided based on Pittsburgh Sleep Quality Index (PSQI) scores. To capture inter-regional complexity, mvMDE was applied to the most informative group of sensors, with one sensor selected from each brain region using four methods: highest average correlation, highest entropy, highest mutual information, and highest principal component loading. This targeted approach reduced computational cost and enhanced the effect sizes (ESs), particularly at large scale factors (e.g., 25) linked to delta-band activity, with the PCA-based method achieving the highest ESs (1.043 for sleep quality in older adults). Overall, we expect that both inter- and intra-regional complexity will play a pivotal role in elucidating neural mechanisms as captured by various physiological data modalities-such as EEG, magnetoencephalography, and magnetic resonance imaging-thereby offering promising insights for a range of biomedical applications.
衰老与睡眠质量差与大脑动力学改变有关,但目前的脑电图(EEG)分析往往忽略了区域复杂性。本研究首次通过引入一种新颖的区域内和区域间复杂性分析方法来解决这一差距,该方法使用来自清醒静息态EEG的多变量多尺度离散熵(mvMDE)。此外,评估区域内和区域间的复杂性为局部神经活动及其在脑区之间的协调之间的动态相互作用提供了一个全面的视角,这对于理解衰老和睡眠质量的神经基础至关重要。分析了58名参与者的数据——24名年轻人(平均年龄 = 24.7 ± 3.4)和34名老年人(平均年龄 = 72.9 ± 4.2),每个年龄组根据匹兹堡睡眠质量指数(PSQI)得分进一步划分。为了捕捉区域间的复杂性,将mvMDE应用于信息最丰富的传感器组,使用四种方法从每个脑区选择一个传感器:最高平均相关性、最高熵、最高互信息和最高主成分负荷。这种有针对性的方法降低了计算成本并提高了效应大小(ESs),特别是在与δ波段活动相关的大尺度因子(例如25)上,基于主成分分析的方法实现了最高的ESs(老年人睡眠质量的ESs为1.043)。总体而言,我们预计区域间和区域内的复杂性在阐明各种生理数据模式(如EEG、脑磁图和磁共振成像)所捕捉的神经机制方面都将发挥关键作用,从而为一系列生物医学应用提供有前景的见解。