Ouyang Mingxing, Gao Yao, Zhou Binqian, Guo Jia, Lei Lei, Wang Yingxiao, Deng Linhong
Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, 1 Gehu Rd, Wujin District, Changzhou 213164, China.
School of Pharmacy, Changzhou University, Changzhou 213164, China.
Biosensors (Basel). 2025 Apr 14;15(4):248. doi: 10.3390/bios15040248.
von Willebrand factor (vWF) is a large glycoprotein in the circulation system, which senses hydrodynamic force at vascular injuries and then recruits platelets in assembling clots. How vWF mechanosenses shear flow for molecular unfolding is an important topic. Here, a Förster resonance energy transfer (FRET) biosensor was developed to monitor vWF conformation change to hydrodynamic force. The vWF-based biosensor is anchored on the cell surface, in which the A2 domain is flanked with a FRET pair. With 293T cells seeded into microfluidic channels, 2.8 dyn/cm of shear force (i.e., 28 μN/cm, or 264.1/s in shear rate) induced a remarkable FRET change (60%) in 30 min. A gradient micro-shear below 2.8 dyn/cm demonstrated FRET responses positively related to flow magnitudes, with 0.14 dyn/cm (1.4 μN/cm) inducing an obvious change (16%). The FRET increases indicate closer positioning of A2's two terminals in vWF or the addition of a more parallel orientation of the FRET pair, supported with the high FRET of the A2-only-based biosensor, which probably resulted from flow-induced A2 dissociation from vWF intramolecular binding such as that in A1/A3 domains. Interestingly, gradient flow increases from 2.8 to 28 dyn/cm led to decreasing FRET changes, suggesting the second-level unfolding in the A2 domain. The LOCK-vWF biosensor with bridged A2 two terminals or an A2-only biosensor could not sense the shear, indicating a structure-flexible A2 and large vWF molecules that are important in the mechanosensation. In conclusion, the developed vWF-based biosensor demonstrated the high mechanosensation of vWF with two-level unfolding to shear force: the dissociation of the A2 domain from vWF intramolecular binding under a micro-shear, and then the unfolding of A2 in vWF under a higher shear; the FRET response to shear force at a very low scale may support the observed clot formation at microvascular wounds. This study provides new insights into the vWF's mechanosensitive feature for its physiological functions and implicated disorders.
血管性血友病因子(vWF)是循环系统中的一种大型糖蛋白,它能感知血管损伤处的流体动力,然后募集血小板来形成凝块。vWF如何通过机械传感剪切流实现分子展开是一个重要课题。在此,开发了一种荧光共振能量转移(FRET)生物传感器来监测vWF构象对流体动力的变化。基于vWF的生物传感器锚定在细胞表面,其中A2结构域两侧是一个FRET对。将293T细胞接种到微流控通道中,2.8达因/厘米的剪切力(即28微牛顿/厘米,或剪切速率为264.1/秒)在30分钟内引起了显著的FRET变化(约60%)。低于2.8达因/厘米的梯度微剪切显示FRET响应与流量大小呈正相关,0.14达因/厘米(1.4微牛顿/厘米)引起明显变化(约16%)。FRET增加表明vWF中A2的两个末端位置更靠近,或者FRET对的取向更平行,这由仅基于A2的生物传感器的高FRET所支持,这可能是由于流动诱导A2从vWF分子内结合(如A1/A3结构域中的结合)解离所致。有趣的是,梯度流从2.8达因/厘米增加到28达因/厘米导致FRET变化减小,表明A2结构域发生了二级展开。具有桥接A2两个末端的LOCK-vWF生物传感器或仅A2生物传感器无法感知剪切力,这表明结构灵活的A2和大型vWF分子在机械传感中很重要。总之,所开发的基于vWF的生物传感器证明了vWF对剪切力具有两级展开的高机械传感能力:在微剪切下A2结构域从vWF分子内结合解离,然后在更高剪切下vWF中的A2展开;在非常低水平下对剪切力的FRET响应可能支持在微血管伤口处观察到的凝块形成。这项研究为vWF的生理功能和相关疾病的机械敏感特征提供了新的见解。