Harvard Graduate Program in Biophysics, Harvard University, Boston, MA.
Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA.
Blood. 2022 Dec 8;140(23):2490-2499. doi: 10.1182/blood.2022016969.
von Willebrand factor (VWF) is a multimeric blood protein that acts as a mechanical probe, responding to changes in flow to initiate platelet plug formation. Previously, our laboratory tests had shown that using single-molecule imaging that shear stress can extend surface-tethered VWF, but paradoxically, we found that the required shear stress was higher than reported for free-in-flow VWF, an observation inconsistent with basic physical principles. To resolve this inconsistency critical to VWF's molecular mechanism, we measured free-VWF extension in shear flow using pulsed laser stroboscopic imaging of single molecules. Here, laser pulses of different durations are used to capture multiple images of the same molecule within each frame, enabling accurate length measurements in the presence of motion blur. At high shear stresses, we observed a mean shift in VWF extension of <200 nm, much shorter than the multiple-micron extensions previously reported with no evidence for the predicted sharp globule-stretch conformational transition. Modeling VWF with a Brownian dynamics simulation, our results were consistent with VWF behaving as an uncollapsed polymer rather than the theorized compact ball. The muted response of free VWF to high shear rates implies that the tension experienced by free VWF in physiological shear flow is lower than indicated by previous reports and that tethering to platelets or the vessel wall is required to mechanically activate VWF adhesive function for primary hemostasis.
血管性血友病因子(VWF)是一种多聚体血液蛋白,作为一种机械探针,对流动变化作出反应,从而启动血小板栓子形成。在此之前,我们实验室的测试表明,使用单分子成像技术,切应力可以拉伸表面连接的 VWF,但矛盾的是,我们发现所需的切应力高于报告的游离流动 VWF,这一观察结果与基本物理原理不一致。为了解决这一对 VWF 分子机制至关重要的不一致性,我们使用单分子脉冲激光频闪成像技术测量了剪切流中的游离 VWF 延伸。在这里,不同持续时间的激光脉冲用于在每个帧内捕获同一分子的多个图像,从而能够在存在运动模糊的情况下进行准确的长度测量。在高切应力下,我们观察到 VWF 延伸的平均位移小于 200nm,明显短于以前报道的无明显预测的球形拉伸构象转变的多微米延伸。通过布朗动力学模拟对 VWF 进行建模,我们的结果与 VWF 作为未折叠聚合物的行为一致,而不是理论上的紧凑球。游离 VWF 对高剪切率的反应迟钝意味着游离 VWF 在生理剪切流中所经历的张力低于先前报道的水平,并且需要与血小板或血管壁的连接来机械激活 VWF 黏附功能以进行初步止血。