Coquart Pauline, El Haddad Andrea, Koutsouras Dimitrios A, Bolander Johanna
Research Unit 'Soft Matter and Biophysics', Department 'Physics and Astronomy', KU Leuven, B-3000 Leuven, Belgium.
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium.
Biosensors (Basel). 2025 Apr 16;15(4):253. doi: 10.3390/bios15040253.
The growing burden of degenerative, cardiovascular, neurodegenerative, and cancerous diseases necessitates innovative approaches to improve our pathophysiological understanding and ability to modulate biological processes. Organic bioelectronics has emerged as a powerful tool in this pursuit, offering a unique ability to interact with biology due to the mixed ionic-electronic conduction and tissue-mimetic mechanical properties of conducting polymers (CPs). These materials enable seamless integration with biological systems across different levels of complexity, from monolayers to complex 3D models, microfluidic chips, and even clinical applications. CPs can be processed into diverse formats, including thin films, hydrogels, 3D scaffolds, and electrospun fibers, allowing the fabrication of advanced bioelectronic devices such as multi-electrode arrays, transistors (EGOFETs, OECTs), ion pumps, and photoactuators. This review examines the integration of CP-based bioelectronics in vivo and in in vitro microphysiological systems, focusing on their ability to monitor key biological events, including electrical activity, metabolic changes, and biomarker concentrations, as well as their potential for electrical, mechanical, and chemical stimulation. We highlight the versatility and biocompatibility of CPs and their role in advancing personalized medicine and regenerative therapies and discuss future directions for organic bioelectronics to bridge the gap between biological systems and electronic technologies.
退行性疾病、心血管疾病、神经退行性疾病和癌症疾病日益加重的负担,使得我们需要创新方法来增进对病理生理学的理解,并提高调节生物过程的能力。有机生物电子学已成为实现这一目标的有力工具,由于导电聚合物(CPs)具有离子-电子混合传导和类组织机械性能,它具备与生物相互作用的独特能力。这些材料能够与从单层到复杂三维模型、微流控芯片乃至临床应用等不同复杂程度的生物系统实现无缝集成。CPs 可以加工成多种形式,包括薄膜、水凝胶、三维支架和电纺纤维,从而制造出先进的生物电子器件,如多电极阵列、晶体管(电化学门控场效应晶体管、有机电化学晶体管)、离子泵和光致动器。本综述探讨了基于 CP 的生物电子学在体内和体外微生理系统中的集成,重点关注其监测关键生物事件的能力,包括电活动、代谢变化和生物标志物浓度,以及其进行电、机械和化学刺激的潜力。我们强调了 CPs 的多功能性和生物相容性及其在推进个性化医疗和再生疗法方面的作用,并讨论了有机生物电子学为弥合生物系统与电子技术之间差距的未来发展方向。