有机生物电子学:弥合生物学和技术之间的信号差距。
Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology.
机构信息
Laboratory of Organic Electronics, Department of Science and Technology, Linköping University , 60174 Norrköping, Sweden.
Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich , 8092 Zürich, Switzerland.
出版信息
Chem Rev. 2016 Nov 9;116(21):13009-13041. doi: 10.1021/acs.chemrev.6b00146. Epub 2016 Jul 1.
The electronics surrounding us in our daily lives rely almost exclusively on electrons as the dominant charge carrier. In stark contrast, biological systems rarely use electrons but rather use ions and molecules of varying size. Due to the unique combination of both electronic and ionic/molecular conductivity in conducting and semiconducting organic polymers and small molecules, these materials have emerged in recent decades as excellent tools for translating signals between these two realms and, therefore, providing a means to effectively interface biology with conventional electronics-thus, the field of organic bioelectronics. Today, organic bioelectronics defines a generic platform with unprecedented biological recording and regulation tools and is maturing toward applications ranging from life sciences to the clinic. In this Review, we introduce the field, from its early breakthroughs to its current results and future challenges.
我们日常生活中所接触到的电子产品几乎完全依赖电子作为主要电荷载流子。与此形成鲜明对比的是,生物系统很少使用电子,而是使用各种大小的离子和分子。由于在导电和半导体有机聚合物和小分子中同时具有电子和离子/分子导电性,这些材料在最近几十年中已成为在这两个领域之间转换信号的优秀工具,并因此提供了一种将生物学与传统电子学有效结合的方法——这就是有机生物电子学领域。如今,有机生物电子学定义了一个具有前所未有的生物学记录和调控工具的通用平台,并朝着从生命科学到临床的应用方向发展。在这篇综述中,我们介绍了该领域,从早期的突破到目前的成果和未来的挑战。