用于包裹亚细胞神经元结构的偶氮苯聚合物薄膜的光诱导滚动

Light-induced rolling of azobenzene polymer thin films for wrapping subcellular neuronal structures.

作者信息

Airaghi Leccardi Marta J I, Desbiolles Benoît X E, Haddad Anna Y, Joy Baju C, Song Chen, Sarkar Deblina

机构信息

MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Commun Chem. 2024 Oct 30;7(1):249. doi: 10.1038/s42004-024-01335-8.

Abstract

Neurons are essential cells composing our nervous system and orchestrating our body, thoughts, and emotions. Recently, research efforts have been focused on studying not only their collective structure and functions but also the single-cell properties as an individual complex system. Nanoscale technology has the potential to unravel mysteries in neuroscience and provide support to the neuron by measuring and influencing several aspects of the cell. As wearable devices interact with different parts of our body, we could envision a thousand times smaller interface to conform on and around subcellular regions of the neurons for unprecedented contact, probing, and control. However, a major challenge is to develop an interface that can morph to the extreme curvatures of subcellular structures. Here, we address this challenge with the development of a platform that conforms even to small neuronal processes. To achieve this, we produced a wireless platform made of an azobenzene polymer that undergoes on-demand light-induced folding with sub-micrometer radius of curvature. We show that these platforms can be fabricated with an adjustable form factor, micro-injected onto neuronal cultures, and can delicately wrap various morphologies of neuronal processes in vitro, toward obtaining seamless biointerfaces with an increased coupling with the cell membrane. Our in vitro testings did not show any adverse effects of the platforms in contact with the neurons. Additionally, for future functionality, nanoparticles or optoelectronic materials could be blended with the azobenzene polymer, and 2D materials on the platform surface could be safely folded to the high curvatures without mechanical failure, as per our calculations. Ultimately, this technology could lay the foundation for future integration of wirelessly actuated materials within or on its platform for neuromodulation, recording, and neuroprotection at the subcellular level.

摘要

神经元是构成我们神经系统并协调我们身体、思想和情感的基本细胞。最近,研究工作不仅集中在研究它们的集体结构和功能,还集中在研究单个细胞作为一个独立复杂系统的特性。纳米技术有潜力解开神经科学中的谜团,并通过测量和影响细胞的多个方面为神经元提供支持。随着可穿戴设备与我们身体的不同部位相互作用,我们可以设想一个比现在小一千倍的界面,以贴合神经元亚细胞区域及其周围,实现前所未有的接触、探测和控制。然而,一个主要挑战是开发一种能够适应亚细胞结构极端曲率的界面。在这里,我们通过开发一个甚至能贴合小神经元突起的平台来应对这一挑战。为了实现这一点,我们制作了一个由偶氮苯聚合物制成的无线平台,该平台在光诱导下按需折叠,曲率半径可达亚微米级。我们表明,这些平台可以制成可调节的形状因子,微注射到神经元培养物中,并且能够在体外精细地包裹各种形态的神经元突起,以获得与细胞膜耦合增强的无缝生物界面。我们的体外测试没有显示该平台与神经元接触有任何不良影响。此外,为了实现未来的功能,根据我们的计算,纳米颗粒或光电材料可以与偶氮苯聚合物混合,并且平台表面的二维材料可以安全地折叠到高曲率而不会出现机械故障。最终,这项技术可以为未来在其平台内或平台上集成无线驱动材料以进行亚细胞水平的神经调节、记录和神经保护奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/984f/11525480/f01cfcd04e7f/42004_2024_1335_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索